Skip to main content
Log in

PKN Solution Revisit: 3-D Hydraulic Fracture Size and Stress Anisotropy Effects

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

c :

Stress anisotropy factor

D :

Reservoir depth

E :

Young’s modulus of the rock

FEM:

Finite element method

H :

Fracture height

H r :

Reservoir thickness

L :

Fracture length

p t :

Downhole treatment pressure

PKN:

Perkins and Kern fracture

R :

Hole radius

S h :

Minimum horizontal stress

S H :

Maximum horizontal stress

S V :

Vertical stress

w max :

Maximum fracture width

w max_R :

Maximum fracture width at hole radius R

\(w_{{\hbox{max} \_S_{\text{V}} }}\) :

Maximum fracture width at maximum stress S V

w 3D_max :

Maximum fracture width for 3-D PKN

ρ :

Density of the rock

ν :

Poisson’s ratio of the rock

References

  • Adachi J, Siebritsb E, Peirce A, Desrochesd J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci 44:739–757

    Article  Google Scholar 

  • Alberty M, McLean M (2004) A physical model for stress cages. SPE-90493

  • Bradley WB (1979) Failure of inclined boreholes. Trans ASME 101:232–239

    Article  Google Scholar 

  • Bunger AP, Zhang X, Jeffrey RG (2012) Parameters affecting the interaction among closely spaced hydraulic fractures. SPE J 17:292–306

    Article  Google Scholar 

  • Castonguay ST, Mear ME, Dean RH, Schmidt JH (2013) Predictions of the growth of multiple interacting hydraulic fractures in three dimensions. SPE-166259

  • Detournay E (2016) Mechanics of hydraulic fractures. Annu Rev Fluid Mech 48:311–339

    Article  Google Scholar 

  • Dohmen T, Zhang J, Li C, Blangy JP, Simon KM, Valleau DN, Ewles JD, Morton S, Checkles S (2013) A new surveillance method for delineation of depletion using microseismic and its application to development of unconventional reservoirs. Paper SPE-166274 presented at the SPE annual technology conference in New Orleans, LA

  • Dohmen T, Blangy JP, Zhang J (2014a) Microseismic depletion delineation. Interpretation 2(3):SG1–SG13

    Article  Google Scholar 

  • Dohmen T, Zhang J, Blangy JP (2014) Measurement and analysis of 3D stress shadowing related to the spacing of hydraulic fracturing in unconventional reservoirs. SPE 170924

  • Friedrich M, Milliken M (2013) Determining the contributing reservoir volume from hydraulically fractured horizontal wells in the Wolfcamp formation in the Midland Basin. URTEC-1582170. doi:10.1190/URTEC2013-149

  • Geertsma J, de Klerk F (1969) A rapid method of predicting width and extent of hydraulically induced fractures. J Pet Technol 21:1571–1581

    Article  Google Scholar 

  • Kress O, Weng X, Gu H, Wu R (2013) Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. Rock Mech Rock Eng 46(3):555–568

    Article  Google Scholar 

  • Li S, Zhang D, Li X (2017) A new approach to the modeling of hydraulic-fracturing treatments in naturally fractured reservoirs. SPE J 22(4):1064–1081. doi:10.2118/181828-PA

    Article  Google Scholar 

  • Mack MG, Warpinski NR (2000) Mechanics of hydraulic fracturing, chap. 6. In: Economides MJ, Nolte KG (eds) Reservoir stimulation, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Nordgren RP (1972) Propagation of a vertical hydraulic fracture. SPE J 12(4):306–314

    Article  Google Scholar 

  • Perkins TK, Kern LR (1961) Widths of hydraulic fractures. In: SPE annual fall meeting, Dallas, 8–11 Oct, SPE-89-PA

  • Roussel NP, Sharma MM (2011) Optimizing fracture spacing and sequencing in horizontal well fracturing. SPE-127986, SPE Production & Operations

  • Sneddon IN, Elliott HA (1946) The opening of a Griffith crack under internal pressure. Q Appl Math 4:262–266

    Article  Google Scholar 

  • Warpinski NR, Abou-Sayed IS, Moschovidis ZA, Parker C (1993) Hydraulic fracture model comparison study: complete results. A report for Gas Research Institute

  • Warpinski NR, Moschovidis ZA, Parker C, Abou-Sayed IS (1994) Comparison study of hydraulic fracturing models—test case: GRI staged field. Experiment No. 3. SPE-25890, SPE Production & Facilities

  • Weng X, Kresse O, Cohen C-E, Wu R, Gu H (2011) Modeling of hydraulic-fracture-network propagation in a naturally fractured formation. SPE-140253, SPE Production & Operations

  • Zhang J (2013) Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. Int J Rock Mech Min Sci 60:160–170

    Google Scholar 

  • Zhang Y, Zhang J (2017) Lithology-dependent minimum horizontal stress and in situ stress estimate. Tectonophysics 703–704:1–8

    Article  Google Scholar 

  • Zhang J, Alberty M, Blangy JP (2016) A semi-analytical solution for estimating the fracture width in wellbore strengthening applications. Paper SPE 180296 presented at SPE deepwater drilling & completions conference held in Galveston, TX, USA

Download references

Acknowledgements

This work was partially supported by the Program for Innovative Research Team in University sponsored by Ministry of Education of China (IRT-17R37), National Science Foundation of China (51774136), China National Key R&D Project (2017YFC0804108) during the 13th Five-Year Plan Period and Natural Science Foundation of Hebei Province of China (D2017508099). The authors wish to thank COMSOL Inc. to provide the Multiphysics FEM software for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jincai Zhang or Shangxian Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Y. & Yin, S. PKN Solution Revisit: 3-D Hydraulic Fracture Size and Stress Anisotropy Effects. Rock Mech Rock Eng 51, 653–660 (2018). https://doi.org/10.1007/s00603-017-1346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1346-4

Keywords

Navigation