Skip to main content
Log in

Effect of Model Scale and Particle Size Distribution on PFC3D Simulation Results

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the effect of model scale and particle size distribution on the simulated macroscopic mechanical properties, unconfined compressive strength (UCS), Young’s modulus and Poisson’s ratio, using the three-dimensional particle flow code (PFC3D). Four different maximum to minimum particle size (d max/d min) ratios, all having a continuous uniform size distribution, were considered and seven model (specimen) diameter to median particle size ratios (L/d) were studied for each d max/d min ratio. The results indicate that the coefficients of variation (COVs) of the simulated macroscopic mechanical properties using PFC3D decrease significantly as L/d increases. The results also indicate that the simulated mechanical properties using PFC3D show much lower COVs than those in PFC2D at all model scales. The average simulated UCS and Young’s modulus using the default PFC3D procedure keep increasing with larger L/d, although the rate of increase decreases with larger L/d. This is mainly caused by the decrease of model porosity with larger L/d associated with the default PFC3D method and the better balanced contact force chains at larger L/d. After the effect of model porosity is eliminated, the results on the net model scale effect indicate that the average simulated UCS still increases with larger L/d but the rate is much smaller, the average simulated Young’s modulus decreases with larger L/d instead, and the average simulated Poisson’s ratio versus L/d relationship remains about the same. Particle size distribution also affects the simulated macroscopic mechanical properties, larger d max/d min leading to greater average simulated UCS and Young’s modulus and smaller average simulated Poisson’s ratio, and the changing rates become smaller at larger d max/d min. This study shows that it is important to properly consider the effect of model scale and particle size distribution in PFC3D simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akram MS, Sharrock GB (2010) Physical and numerical investigation of a cemented granular assembly of steel spheres. Int J Numer Anal Methods Geomech 34(18):1896–1934. doi:10.1002/nag.885

    Article  Google Scholar 

  • Antonellini M, Pollard D (1995) Distinct element modeling of deformation bands in sandstone. J Struct Geol 17(8):1165–1182

    Article  Google Scholar 

  • ASTM International (2008) Standard test method for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM D7012-07. West Conshohocken, PA

  • Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Florida

    Google Scholar 

  • Bieniawski ZT (1968) The effect of specimen size on compressive strength of coal. Int J Rock Mech Min Sci 5:325–335

    Article  Google Scholar 

  • Blair SC, Cook NGW (1998) Analysis of compressive fracture in rock using statistical techniques: part I. A non-linear rule-based model. Int J Rock Mech Min Sci 35(7):837–848. doi:10.1016/s0148-9062(98)00008-4

    Article  Google Scholar 

  • Boutt D, McPherson B (2002) The role of particle packing in modeling rock mechanical behavior using discrete elements. In: Discrete element methods, pp 86–92. doi:10.1061/40647(259)16

  • Brandt H (1955) A study of the speed of sound in porous granular media. J Appl Mech 22:479–486

    Google Scholar 

  • Cho N, Martin C, Sego D (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44(7):997–1010. doi:10.1016/j.ijrmms.2007.02.002

    Article  Google Scholar 

  • Collop AC, McDowell GR, Lee Y (2004) Use of the distinct element method to model the deformation behavior of an idealized asphalt mixture. Int J Pavement Eng 5(1):1–7. doi:10.1080/10298430410001709164

    Article  Google Scholar 

  • Cundall P (1987) Distinct element models of rock and soil structure. In: Brown ET (ed) Analytical and computational methods in engineering rock mechanics. Allen & Unwin, London, pp 129–163

    Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  • Deresiewicz H (1958) Mechanics of granular matter. Adv Appl Mech 5:233–306

    Article  Google Scholar 

  • Ding X, Zhang L (2011) Simulation of rock fracturing using particle flow modeling: phase I—model development and calibration. In: Paper presented at the 45th U.S. rock mechanics/geomechanics symposium, June 26–29, 2011, San Francisco, California

  • Duffy JM, Mindlin RD (1957) Stress-strain relations and vibrations of a granular medium. J Appl Mech 25:585–593

    Google Scholar 

  • Fairhurst C, Hudson J (1999) Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. Int J Rock Mech Min Sci 36(2):279–289

    Google Scholar 

  • Fu Y (2005) Experimental quantification and DEM simulation of micro-macro behaviors of granular materials using X-ray tomography imaging. PhD thesis, Louisiana State University

  • Griffith AA (1924) The theory of rupture. In: 1st international congress on applied mechanics, Delft, pp 55–63

  • Hales TC (1998) An overview of the Kepler conjecture. ArXiv Mathematics e-prints. arXiv:math/9811078

  • Hazzard JF, Young RP, Maxwell SC (2000) Micromechanical modeling of cracking and failure in brittle rocks. J Geophys Res B Solid Earth 105(B7):16683–16697

    Article  Google Scholar 

  • Heilbronner R, Keulen N (2006) Grain size and grain shape analysis of fault rocks. Tectonophysics 427(1–4):199–216

    Article  Google Scholar 

  • Holt R, Kjolaas J, Larsen I, Li L, Gotussopillitteri A, Sonstebo E (2005) Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock. Int J Rock Mech Min Sci 42(7–8):985–995. doi:10.1016/j.ijrmms.2005.05.006

    Article  Google Scholar 

  • Homand-Etienne F, Hoxhaa D, Shao JF (1998) A continuum damage constitutive law for brittle rocks. Comput Geotech 22(2):135–151

    Article  Google Scholar 

  • Huang H (1999) Discrete element modeling of tool-rock interaction. PhD thesis, University of Minnesota, Minneapolis, MN

  • ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials, ISRM Commission on Standardization of Laboratory and Field Tests. Int J Rock Mech Min Sci 16:135–140

    Google Scholar 

  • Itasca (2004) PFC3D (particle flow code in 3 dimensions) manual. Version 4.0 edn. ICG, Minneapolis, Minnesota

  • Jerier J-F, Richefeu V, Imbault D, Donzé F-V (2010) Packing spherical discrete elements for large scale simulations. Comput Meth Appl Mech Eng 199(25–28):1668–1676. doi:10.1016/j.cma.2010.01.016

    Article  Google Scholar 

  • Jing L (2003) A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci 40(3):283–353. doi:10.1016/s1365-1609(03)00013-3

    Article  Google Scholar 

  • Keulen N, Heilbronner R, Stünitz H, Boullier A-M, Ito H (2007) Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids. J Struct Geol 29(8):1282–1300. doi:10.1016/j.jsg.2007.04.003

    Article  Google Scholar 

  • Koyama T, Jing L (2007) Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks—a particle mechanics approach. Eng Anal Boundary Elem 31(5):458–472. doi:10.1016/j.enganabound.2006.11.009

    Article  Google Scholar 

  • Kulatilake PHSW, Malama B, Wang J (2001) Physical and particle flow modeling of jointed rock block behavior under uniaxial loading. Int J Rock Mech Min Sci 38(5):641–657

    Article  Google Scholar 

  • Lajtai EZ, Bielus LP (1986) Stress corrosion cracking of Lac du Bonnet granite in tension and compression. Rock Mech Rock Eng 19:71–87

    Article  Google Scholar 

  • Lim S, Martin CD, Åkesson U (2012) In-situ stress and microcracking in granite cores with depth. Eng Geol 147:1–13

    Article  Google Scholar 

  • Madadi M, Tsoungui O, Lätzel M, Luding S (2004) On the fabric tensor of polydisperse granular materials in 2D. Int J Solids Struct 41(9–10):2563–2580

    Article  Google Scholar 

  • Mair K, Abe S (2008) 3D numerical simulations of fault gouge evolution during shear: grain size reduction and strain localization. Earth Planet Sci Lett 274(1–2):72–81. doi:10.1016/j.epsl.2008.07.010

    Article  Google Scholar 

  • Martin CD (1993) The strength of massive Lac du Bonnet granite around underground openings. PhD thesis, The University of Manitoba (Canada), Canada

  • Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659. doi:10.1016/0148-9062(94)90005-1

    Article  Google Scholar 

  • Martin CD, Read RS, Martino JB (1997) Observations of brittle failure around a circular test tunnel. Int J Rock Mech Min Sci 34(7):1065–1073

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364. doi:10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  • Pretorius JPG, Se M (1972) Weakness correlation and the size effect in rock strength tests. J S Afr Inst Min Met 12:322–327

    Google Scholar 

  • Saint-Cyr B, Voivret C, Delenne J-Y, Radjai F, Sornay P (2009) Effect of shape nonconvexity on the shear strength of granular media. In: Powders and grains 2009, AIP conference proceedings, materials physics & applications, vol 1145. Golden, CO USA, pp 389–392

  • Schöpfer MPJ, Childs C, Walsh JJ (2007) Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 1. Model calibration, boundary conditions, and selected results. J Geophys Res 112(B10):B10401. doi:10.1029/2006jb004902

    Article  Google Scholar 

  • Schöpfer MPJ, Abe S, Childs C, Walsh JJ (2009) The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from DEM modelling. Int J Rock Mech Min Sci 46(2):250–261

    Article  Google Scholar 

  • Walker T (2003) Granite grain size: not a problem for rapid cooling of plutons. J Creat 17(2):49–55

    Google Scholar 

  • Wang Y, Tonon F (2009) Modeling Lac du Bonnet granite using a discrete element model. Int J Rock Mech Min Sci 46(7):1124–1135

    Article  Google Scholar 

  • Wang Y, Tonon F (2010) Calibration of a discrete element model for intact rock up to its peak strength. Int J Numer Anal Methods Geomech 34(5):447–469. doi:10.1002/nag.811

    Article  Google Scholar 

  • Wichtmann T, Triantafyllidis T (2010) On the influence of the grain size distribution curve on P-wave velocity, constrained elastic modulus Mmax and Poisson’s ratio of quartz sands. Soil Dyn Earthq Eng 30(8):757–766. doi:10.1016/j.soildyn.2010.03.006

    Article  Google Scholar 

  • Yan Y, Ji S (2010) Discrete element modeling of direct shear tests for a granular material. Int J Numer Anal Methods Geomech 34(9):978–990. doi:10.1002/nag.848

    Google Scholar 

  • Yang B, Jiao Y, Lei S (2006) A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng Comput 23(6):607–631

    Article  Google Scholar 

  • Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44:871–889

    Article  Google Scholar 

  • Zhang X-P, Wong L (2012) Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech Rock Eng 45(5):711–737. doi:10.1007/s00603-011-0176-z

    Google Scholar 

  • Zhang X-P, Wong L (2013) Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression. Int J Fract 180(1):93–110

    Article  Google Scholar 

  • Zhang Q, Zhu H, Zhang L, Ding X (2011) Study of scale effect on intact rock strength using particle flow modeling. Int J Rock Mech Min Sci 48(8):1320–1328. doi:10.1016/j.ijrmms.2011.09.016

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Donors of the American Chemical Society Petroleum Research Fund for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, X., Zhang, L., Zhu, H. et al. Effect of Model Scale and Particle Size Distribution on PFC3D Simulation Results. Rock Mech Rock Eng 47, 2139–2156 (2014). https://doi.org/10.1007/s00603-013-0533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0533-1

Keywords

Navigation