Skip to main content
Log in

Hydraulic Fracturing In Situ Stress Estimations in a Potential Geothermal Site, Seokmo Island, South Korea

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

We conducted hydraulic fracturing (HF) in situ stress measurements in Seokmo Island, South Korea, to understand the stress state necessary to characterize a potential geothermal reservoir. The minimum horizontal principal stress was determined from shut-in pressures. In order to calculate the maximum horizontal principal stress (S Hmax) using the classical Hubbert–Willis equation, we carried out hollow cylinder tensile strength tests and Brazilian tests in recovered cores at depths of HF tests. Both tests show a strong pressure rate dependency in tensile strengths, from which we derived a general empirical equation that can be used to convert laboratory determined tensile strength to that suitable for in situ. The determined stress regime (reverse-faulting) and S Hmax direction (ENE–WSW) at depths below ~300 m agrees with the first order tectonic stress. However the stress direction above ~300 m (NE–SW) appears to be interfered by topography effect due to a nearby ridge. The state of stress in Seokmo Island is in frictional equilibrium constrained by optimally oriented natural fractures and faults. However, a severe fluctuation in determined S Hmax values suggests that natural fractures with different frictional coefficients seem to control stress condition quite locally, such that S Hmax is relatively low at depths where natural fractures with low frictional coefficients are abundant, while S Hmax is relatively high at depths where natural fractures with low frictional coefficients are scarce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ask D, Stephansson O, Cornet FH, Ask MVS (2009) Rock stress, rock stress measurements, and the Integrated Stress Determination Method (ISDM). Rock Mech Rock Eng 42:559–584

    Article  Google Scholar 

  • Barton CA, Zoback MD, Burns KL (1988) In-situ stress orientation and magnitude at the fenton geothermal site, New Mexico, determined from wellbore breakouts. Geophys Res Lett 15:467–470

    Article  Google Scholar 

  • Baumgärtner J, Zoback MD (1989) Interpretation of hydraulic fracturing pressure-time records using interactive analysis methods. Int J Rock Mech Min Sci Geomech Abstr 26:461–469

    Article  Google Scholar 

  • Bell JS, Gough DI (1979) Northeast-southwest compressive stress in Alberta: evidence from oil wells. Earth Planet Sci Lett 45:475–482. doi:10.1016/0012-821X(79)90146-8

    Article  Google Scholar 

  • Bredehoeft JD, Wolff RG, Keys WS, Shuter E (1976) Hydraulic fracturing to determine the regional in situ stress field, Piceance Basin, Colorado. Geol Soc Amer Bull 87:250–258. doi:10.1130/0016-7606(1976)87<250:HFTDTR>20CO;2

    Article  Google Scholar 

  • Brudy M, Zoback MD (1999) Drilling-induced tensile wall-fractures: implications for determination of in situ stress orientation and magnitude. Int J Rock Mech Min Sci 36:191–215. doi:10.1016/S0148-9062(98)00182-X

    Article  Google Scholar 

  • Brudy M, Zoback MD, Rummel F, Baumgärtner J (1997) Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength. J Geophys Res 102:18453–18475. doi:10.1029/96JB02942

    Article  Google Scholar 

  • Byrne T, Lin W, Tsutsumi A, Yamamoto Y, Lewis J, Kanagawa K, Kitamura Y, Yamaguchi A, Kimura G (2009) Anelastic strain recovery reveals extension across SW japan subduction zone. Geophys Res Lett 36:L23310. doi:10.1029/2009GL040749

    Article  Google Scholar 

  • Chang C, Lee JB, Kang TS (2010) Interaction between regional stress state and faults: complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea. Tectonophys 485:164–177. doi:10.1016/j.tecto.2009.12.012

    Article  Google Scholar 

  • Evans KF, Engelder T (1989) Some problems in estimating horizontal stress magnitudes in “Thrust” regiems. Int J Rock Mech Min Sci Geomech Abstr 26:647–660. doi:10.1016/0148-0962(89)1445-9

    Article  Google Scholar 

  • Evans KF, Engelder T, Plumb A (1989) Appalachian stress study: 1. A detailed description of in situ stress variations in Devonian shales of the Appalachian Plateau. J Geophys Res 94:7129–7154. doi:10.1029/JB094iB06p07129

    Article  Google Scholar 

  • Evans KF, Cornet FH, Hashida T, Hayashi K, Ito T, Matsuki K, Wallroth T (1999) Stress and rock mechanics issues of relevance to HDR/HWR engineered geothermal systems: review of developments during the past 15 years. Geothermics 28:455–474. doi:10.1016/S0375-6505(99)00023-1

    Article  Google Scholar 

  • Genter A, Evans KF, Cuenot N, Fritsch D, Sanjuan B (2010) Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal system(EGS). Geosci 342:502–516. doi:10.1016/j.crte.2010.01.006

    Article  Google Scholar 

  • Gronseth JM, Kry PR (1983) Instantaneous shut-in pressure and its relationship to the minimum in situ stress. In: Hydraulic fracturing stress measurements. Natl Academy Press, Washington DC, pp 230–257

  • Haimson BC, Chang C (2002) True triaxial strength of the KTB amphibolite under borehole wall conditions and its use to estimate the maximum horizontal in situ stress. J Geophys Res 107: ETG 15-1-ETG15-14. doi: 10.1029/2001JB000647

  • Haimson BC, Cornet FH (2003) ISRM suggested methods for rock stress estimation-Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int J Rock Mech Min Sci 40:1011–1020. doi:10.1016/j.ijrmms.2003.08.002

    Article  Google Scholar 

  • Haimson BC, Zhao Z (1991) Effect of borehole size and pressurization rate on hydraulic fracturing breakdown pressure. In: Roegiers JC (ed) Rock mechanics as a multidisciplinary science. Balkema, Rotterdam, pp 191–199

    Google Scholar 

  • Haimson BC, Lee MY, Song I (2003) Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress. Int J Rock Mech Min Sci 40:1243–1256. doi:10.1016/S1365-1609(03)00119-9

    Article  Google Scholar 

  • Häring MO, Schanz U, Ladner F, Dyer BC (2008) Characterisation of the Basel 1 geothermal system. Geothermics 37:469–495. doi:10.1016/j.geothermics.2008.06.002

    Article  Google Scholar 

  • Hong TK, Choi H (2012) Seismological constraints on the collision belt between the North and South China blocks in the Yellow Sea. Tectonophys 570:102–113. doi:10.1016/j.tecto.2012.08.034

    Article  Google Scholar 

  • Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. Trans Soc Petrol Eng 210:153–168

    Google Scholar 

  • Ingraffea AR, Schmidt RA (1978) Experimental verification of a fracture mechanics model for tensile strength prediction of Indiana limestone, Proc 19th US Symp Rock Mech. Amer Rock Mech Assoc, Reno, Nevada, pp 247–253

  • ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15(3):99–103. doi:10.1016/0148-9062(78)90003-7

    Article  Google Scholar 

  • Ito T, Evans KF, Kawai K, Hayashi K (1999) Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress. Int J Rock Mech Min Sci 36:811–826. doi:10.1016/S0148-9062(99)00053-4

    Article  Google Scholar 

  • Ito T, Funato A, Lin W, Doan ML, Boutt DF, Kano Y, Ito H, Saffer D, McNeill LC, Byrne T, Moe KT (2013) Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core analysis: a case study in the IODP Expedition 319. J Geophys Res 118:1203–1215. doi:10.1002/jgrb.50086

    Article  Google Scholar 

  • Jaeger JC, Cook NGW, Zimmerman R (2007) Fundamental of rock mechanics. Blackwell, London

    Google Scholar 

  • Jun MS (1991) Body-wave analysis for shallow intraplate earthquakes in the Korean Peninsula and Yellow Sea. Tectonophys 192:345–357. doi:10.1016/0040-1951(19)90108-5

    Article  Google Scholar 

  • Klee G, Bunger A, Meyer G, Rummel F, Shen B (2011) In situ stresses in borehole Blanche-1/South Australia derived from breakouts, core discing and hydraulic fracturing to 2 km depth. Rock Mech Rock Eng 44:531–540. doi:10.1007/s00603-011-0157-2

    Article  Google Scholar 

  • Lau JSO, Gorski B, Jackson R (1995) The effect of temperature and water saturation on mechanical properties of Lac du Bonnet pink granite, Eighth Int Congress Rock Mech. Int Soc Rock Mech, Tokyo, pp 25–29

  • Lee MY, Haimson BC (1989) Statistical evaluation of hydraulic fracturing stress measurement parameters. Int J Rock Mech Min Sci Geomech Abstr 26:447–456. doi:10.1016/0148-9062(89)91420-4

    Article  Google Scholar 

  • Lee Y, Park S, Kim J, Kim H, Koo M (2010) Geothermal resource assessment in Korea. Renew Sustain Energy Rev 14:2392–2400. doi:10.1016/j.rser.2010.05.003

    Article  Google Scholar 

  • Li Y, Schmitt DR (1998) Drilling-induced core fractures and in situ stress. J Geophys Res 103:5225–5239. doi:10.1029/97JB02333

    Article  Google Scholar 

  • Liu L, Zoback MD (1992) The effect of topography on the state of stress in the crust: application to the site of the Cajon Pass Scientific Drilling Project. J Geophys Res 97:5095–5108. doi:10.1029/91JB01355

    Article  Google Scholar 

  • Majer EL, Bariab R, Stark M, Oates S, Bommer J, Smithf B, Asanuma H (2007) Induced seismicity associated with Enhanced Geothermal Systems. Geothermics 36:185–222

    Article  Google Scholar 

  • McTigue DF, Mei CC (1987) Gravity-induced stresses near axisymmetric topography of small slope. Int J Numer Anal Method Geomech 11:257–268. doi:10.1002/nag.1610110304

    Article  Google Scholar 

  • Oh Y, Chang C, Lee TJ (2010) Distinguishing permeable fractures in crystalline rock using well log data: case study in Seokmo Island. J Geological Society of Korea 46:595–607

    Google Scholar 

  • Rummel F (1987) Fracture mechanics approach to hydraulic fracturing stress measurements. In: Atkinson BK (ed) Fracture mechanics of rocks. Academic Press, London, pp 217–240

    Chapter  Google Scholar 

  • Rutqvist J, Tang CF, Stephansson O (2000) Uncertainty in the maximum principal stress estimated from hydraulic fracturing measurements due to the presence of the induced fracture. Int J Rock Mech Min Sci 37:107–120. doi:10.1016/S1365-1609(99)00097-0

    Article  Google Scholar 

  • Savage WZ, Swlofs HS (1986) Tectonic and gravitational stress in long symmetric ridges and valleys. J Geophys Res 91:3677–3685. doi:10.1029/JB091iB03p03677

    Article  Google Scholar 

  • Schmitt DR, Zoback MD (1992) Diminished pore pressure in low-porosity crystalline rock under tensional failure: apparent strengthening by dilatancy. J Geophys Res 97:273–288. doi:10.1029/91JB02256

    Article  Google Scholar 

  • Stephansson O, Zang A (2012) ISRM Suggested Methods for Rock Stress Estimation—Part 5: establishing a model for the in situ stress at a given site. Rock Mech Rock Eng 45:955–969. doi:10.1007/s00603-012-0270-x

    Article  Google Scholar 

  • Warpinski NR, Branagan P, Wilmer R (1983) In-situ stress measurements at DOE’s multi-well experiment. In: Frohne KH (ed) Western gas sands subprogram review meeting. Proc US Dep Energy, Morgantown, pp 181–189

    Google Scholar 

  • Yamashita F, Mizoguchi K, Fukuyama E, Omura K (2010) Reexamination of the present stress state of the Atera fault system, central Japan, based on the calibrated crustal stress data of hydraulic fracturing tests obtained by measuring the tensile strength of rocks. J Geophys Res 115:B04409. doi:10.1029/2009JB006287

    Google Scholar 

  • Zoback MD (2007) Reservoir Geomechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Zoback MD, Townend J (2001) Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Teconophys 336:19–30. doi:10.1016/S0040-1951(01)00091-9

    Article  Google Scholar 

Download references

Acknowledgments

We thank an anonymous reviewer and Giovanni Barla (Editor-in-Chief) for their comments on our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandong Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, C., Jo, Y., Oh, Y. et al. Hydraulic Fracturing In Situ Stress Estimations in a Potential Geothermal Site, Seokmo Island, South Korea. Rock Mech Rock Eng 47, 1793–1808 (2014). https://doi.org/10.1007/s00603-013-0491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0491-7

Keywords

Navigation