Skip to main content

Advertisement

Log in

Biomechanical analysis of spino-pelvic postural configurations in spondylolysis subjected to various sport-related dynamic loading conditions

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To study the risks of spondylolysis due to extrinsic loading conditions related to sports activities and intrinsic spino-pelvic postural parameters [pelvic incidence (PI) and sacral slope (SS)].

Methods

A comprehensive osseo-disco-ligamentous L4–S1 finite element model was built for three cases with spondylolysis representing three different spino-pelvic angular configurations (SS = 32°, 47°, 59° and PI = 49°, 58°, 72°, respectively). After simulating the standing posture, 16 dynamic loading conditions were computationally tested for each configuration by combining four sport-related loads (compression, sagittal and lateral bending and axial torque). For each simulation, the Von Mises stress, L5–S1 facet contact force and resultant internal loads at the sacral endplate were computed. Significant effects were determined with an ANOVA.

Results

The maximal stress and volume of cancellous bone in the pars with stress higher than 75% of the ultimate stress were higher with 900 N simulated compression (2.2 MPa and 145 mm3) compared to only the body weight (1.36 MPa and 20.9 mm3) (p < 0.001). Combined compression with 10 Nm of flexion and an axial torque of 6 Nm generated the highest stress conditions (up to 2.7 MPa), and L5–S1 facet contact force (up to 430 N). The maximal stress was on average 17% higher for the case with the highest SS compared to the one with lowest SS for the 16 tested conditions (p = 0.0028).

Conclusions

Combined flexion and axial rotation with compression generated the highest stress conditions related to risks of spondylolysis. The stress conditions intensify in patients with higher PI and SS.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leone A, Cianfoni A, Cerase A, Magarelli N, Bonomo L (2011) Lumbar spondylolysis: a review. Skelet Radiol 40(6):683–700. https://doi.org/10.1007/s00256-010-0942-0

    Article  Google Scholar 

  2. Brooks BK, Southam SL, Mlady GW, Logan J, Rosett M (2010) Lumbar spine spondylolysis in the adult population: using computed tomography to evaluate the possibility of adult onset lumbar spondylosis as a cause of back pain. Skelet Radiol 39(7):669–673

    Article  Google Scholar 

  3. Sakai T, Sairyo K, Suzue N, Kosaka H, Yasui N (2010) Incidence and etiology of lumbar spondylolysis: review of the literature. J Orthop Sci 15(3):281–288. https://doi.org/10.1007/s00776-010-1454-4

    Article  PubMed  Google Scholar 

  4. Mac-Thiong JM (2008) Morphologie sacro-pelvienne et équilibre spino-pelvien sagittal dans le spondylolisthésis lombosacré pédiatrique : développement d’un modèle postural. Université de Montréal, Montreal

    Google Scholar 

  5. Roussouly P, Gollogly S, Berthonnaud E, Labelle H, Weidenbaum M (2006) Sagittal alignment of the spine and pelvis in the presence of L5–S1 isthmic lysis and low-grade spondylolisthesis. Spine 31(21):2484–2490. https://doi.org/10.1097/01.brs.0000239155.37261.69

    Article  PubMed  Google Scholar 

  6. Labelle H, Roussouly P, Berthonnaud É, Transfeldt E, O’Brien M, Chopin D, Hresko T, Dimnet J (2004) Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine 29(18):2049–2054

    Article  PubMed  Google Scholar 

  7. Sevrain A, Aubin CE, Gharbi H, Wang X, Labelle H (2012) Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study. Scoliosis 7(1):2. https://doi.org/10.1186/1748-7161-7-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Labelle H, Mac-Thiong JM, Roussouly P (2011) Spino-pelvic sagittal balance of spondylolisthesis: a review and classification. Eur Spine J 20(5):641–646

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hernandez CJ, Lambers FM, Widjaja J, Chapa C, Rimnac CM (2014) Quantitative relationships between microdamage and cancellous bone strength and stiffness. Bone 66:205–213. https://doi.org/10.1016/j.bone.2014.05.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Crewe H, Campbell A, Elliott B, Alderson J (2013) Lumbo-pelvic loading during fast bowling in adolescent cricketers: The influence of bowling speed and technique. J Sports Sci 31(10):1082–1090

    Article  PubMed  Google Scholar 

  11. Zhang Y, Ma Y, Liu G (2016) Lumbar spinal loading during bowling in cricket: a kinetic analysis using a musculoskeletal modelling approach. J Sports Sci 34(11):1030–1035

    Article  PubMed  Google Scholar 

  12. Chosa E, Totoribe K, Tajima N (2004) A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method. J Orthop Res 22(1):158–163. https://doi.org/10.1016/s0736-0266(03)00160-8

    Article  PubMed  Google Scholar 

  13. Terai T, Sairyo K, Goel VK, Ebraheim N, Biyani A, Faizan A, Sakai T, Yasui N (2010) Spondylolysis originates in the ventral aspect of the pars interarticularis: a clinical and biomechanical study. J Bone Joint Surg Br 92-B(8):1123–1127. https://doi.org/10.1302/0301-620x.92b8.22883

    Article  Google Scholar 

  14. Beadon K, Johnston JD, Siggers K, Itshayek E, Cripton PA (2008) A repeatable ex vivo model of spondylolysis and spondylolisthesis. Spine 33(22):2387–2393. https://doi.org/10.1097/BRS.0b013e318184e775

    Article  PubMed  Google Scholar 

  15. Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31(6):681–687

    Article  PubMed  CAS  Google Scholar 

  16. Zander T, Dreischarf M, Timm AK, Baumann WW, Schmidt H (2017) Impact of material and morphological parameters on the mechanical response of the lumbar spine—a finite element sensitivity study. J Biomech 53:185–190

    Article  PubMed  Google Scholar 

  17. Wagnac E, Arnoux PJ, Garo A, Aubin CE (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50(9):903–915

    Article  PubMed  Google Scholar 

  18. Wang W, Aubin CE, Cahill P, Baran G, Arnoux PJ, Parent S, Labelle H (2016) Biomechanics of high-grade spondylolisthesis with and without reduction. Med Biol Eng Comput 54(4):619–628

    Article  PubMed  Google Scholar 

  19. Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A (1992) Biomechanical properties of human lumbar spine ligaments. J Biomech 25(11):1351–1356

    Article  PubMed  CAS  Google Scholar 

  20. Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech 40(2):271–280. https://doi.org/10.1016/j.jbiomech.2006.01.007

    Article  PubMed  Google Scholar 

  21. Henao J, Aubin CE, Labelle H, Arnoux PJ (2016) Patient-specific finite element model of the spine and spinal cord to assess the neurological impact of scoliosis correction: preliminary application on two cases with and without intraoperative neurological complications. Comput Methods Biomech Biomed Eng 19(8):901–910. https://doi.org/10.1080/10255842.2015.1075010

    Article  Google Scholar 

  22. Funken J, Heinrich B, Heinrich K, Felker K, Fett D, Platen P, Brüggemann G-P (2016) Estimatin lumbar spine loading during volleyball specific movements using 3D modeling. In: ISBS-conference proceedings archive

  23. Zander T, Dreischarf M, Schmidt H, Bergmann G, Rohlmann A (2015) Spinal loads as influenced by external loads: a combined in vivo and in silico investigation. J Biomech 48(4):578–584

    Article  PubMed  Google Scholar 

  24. Rohlmann A, Zander T, Rao M, Bergmann G (2009) Applying a follower load delivers realistic results for simulating standing. J Biomech 42(10):1520–1526

    Article  PubMed  CAS  Google Scholar 

  25. Külling FA, Florianz H, Reepschläger B, Gasser J, Jost B, Lajtai G (2014) High prevalence of disc degeneration and spondylolysis in the lumbar spine of professional beach volleyball players. Orthop J Sports Med 2(4):2325967114528862

    Article  PubMed  PubMed Central  Google Scholar 

  26. Masharawi Y, Rothschild B, Salame K, Dar G, Peleg S, Hershkovitz I (2005) Facet tropism and interfacet shape in the thoracolumbar vertebrae: characterization and biomechanical interpretation. Spine 30(11):E281–E292. https://doi.org/10.1097/01.brs.0000164098.00201.8d

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Medtronic of Canada and the Natural Sciences and Engineering Research Council of Canada (Industrial Research Chair program with Medtronic of Canada). Special thanks to Drs Eric Wagnac, Yvan Petit and Léo Fradet who contributed to the development of the SM2S base finite element model used in this study, as part of the iLab-Spine initiative funded by the A*MIDEX Foundation (Aix-Marseille University Initiative of Excellence, n° ANR 11-IDEX-0001-02). The study was approved by the Institutional review boards of the two participating institutions (CHU Sainte-Justine (Montréal, CANADA) (n°2668) and the Campbell Clinics (Memphis, USA)). The Manuscript submitted does not contain information about medical device(s)/drug(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Éric Aubin.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterba, M., Arnoux, PJ., Labelle, H. et al. Biomechanical analysis of spino-pelvic postural configurations in spondylolysis subjected to various sport-related dynamic loading conditions. Eur Spine J 27, 2044–2052 (2018). https://doi.org/10.1007/s00586-018-5667-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-018-5667-0

Keywords

Navigation