Skip to main content
Log in

From double Lie groupoids to local Lie 2-groupoids

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We apply the bar construction to the nerve of a double Lie groupoid to obtain a local Lie 2-groupoid. As an application, we recover Haefliger’s fundamental groupoid from the fundamental double groupoid of a Lie groupoid. In the case of a symplectic double groupoid, we study the induced closed 2-form on the associated local Lie 2-groupoid, which leads us to propose a definition of a symplectic 2-groupoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Artin and B. Mazur. On the van Kampen theorem, Topology, 5(2) (1966), 179–189.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Bursztyn, M. Crainic, A. Weinstein and C. Zhu. Integration of twisted Dirac brackets, Duke Mathematical Journal, 123(3) (2004), 549–608.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Brown and K.C.H. Mackenzie. Determination of a double Lie groupoid by its core diagram, Journal of Pure and Applied Algebra, 80(3) (1992), 237–272.

    Article  MATH  MathSciNet  Google Scholar 

  4. A.M. Cegarra, B.A. Heredia and J. Remedios. Double groupoids and homotopy 2-types, ArXiv:1003.3820 (2010).

  5. A.M. Cegarra and J. Remedios. The relationship between the diagonal and the bar constructions on a bisimplicial set, Topology and its Applications, 153(1) (2005), 21–51.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Dold and D. Puppe. Homologie nicht-additiver Funktoren. Anwendungen, Annales de l’Institut Fourier, 11(6) (1961), 201–312.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Duskin. Higher dimensional torsors and the cohomology of topoi: the abelian theory, Applications of sheaves (1979), 255–279.

  8. P.G. Goerss and J.F. Jardine. Simplicial homotopy theory, Springer Verlag (2009).

  9. S.I. Gelfand and Y. Manin. Methods of homological algebra: Springer monographs in mathematics, Springer Verlag (2003).

  10. A. Haefliger. Homotopy and integrability, Manifolds-Amsterdam 1970 (1971), 133–163.

  11. A. Haefliger. Orbi-espaces, Sur les Groupes Hyperboliques d’prés Mikhael Gromov, Progress in Mathematics, Birkhäuser, 83 (1990), 203–213.

    MathSciNet  Google Scholar 

  12. A. Henriques. Integrating L-infinity algebras, Compositio Mathematica, 144(4) (2008), 1017–1045.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Laurent-Gengoux, J.L. Tu and P. Xu. Chern-Weil map for principal bundles over groupoids, Mathematische Zeitschrift, 255(3) (2007), 451–491.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Li-Bland and P. Ševera. Integration of Exact Courant Algebroids, ArXiv:1101.3996 (2011).

  15. J.-H. Lu and A. Weinstein. Poisson Lie groups, dressing transformations, and Bruhat decompositions, Journal of Differential Geometry, 31(2) (1990), 501–526.

    MATH  MathSciNet  Google Scholar 

  16. Z.J. Liu, A. Weinstein and P. Xu. Manin triples for Lie bialgebroids, Journal of Differential Geometry, 45(3) (1997), 547–574.

    MathSciNet  Google Scholar 

  17. K.C.H. Mackenzie. Double Lie algebroids and second-order geometry, I, Advances in Mathematics, 94(2) (1992), 180–239.

    Article  MATH  MathSciNet  Google Scholar 

  18. K.C.H. Mackenzie. On symplectic double groupoids and the duality of Poisson groupoids, International Journal of Mathematics, 10(4) (1999), 435–456.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Moerdijk and J. Mrcun. Lie groupoids, sheaves and cohomology, Poisson geometry, deformation quantisation and group representations, 323, 145–272.

  20. B. Noohi. Fundamental groups of algebraic stacks, Journal of the Institute of Mathematics of Jussieu, 3(1) (2004), 69–103.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Stefanini. On the integration of LA-groupoids and duality for Poisson groupoids, Travaux mathématiques. Fascicule XVII, Université du Luxembourg, (2007), 39–59.

  22. Y. Sheng and C. Zhu. Higher Extensions of Lie Algebroids and Application to Courant Algebroids, ArXiv:1103.5920 (2011).

  23. Y. Sheng and C. Zhu. Semidirect products of representations up to homotopy, ArXiv:0910.2147, to appear in Pacific Journal of Mathematics (2009).

  24. Y. Sheng and C. Zhu. Integration of semidirect product Lie 2-algebras, ArXiv:1003.1048 (2010).

  25. P. Ševera. Some title containing the words “homotopy” and “symplectic”, e.g. this one, Travaux mathématiques. Fascicule XVI, Université du Luxembourg, (2005), 121–137.

  26. A. Weinstein. Coisotropic calculus and Poisson groupoids, Journal of the Mathematical Society of Japan, 40(4) (1988), 705–727.

    Article  MATH  MathSciNet  Google Scholar 

  27. C.A. Weibel. An introduction to homological algebra, Cambridge University Press (1995).

  28. P. Xu. Momentum maps and Morita equivalence, Journal of Differential Geometry, 67(2) (2004), 289–333.

    MATH  MathSciNet  Google Scholar 

  29. C. Zhu. Kan replacement of simplicial manifolds, Letters in Mathematical Physics, 90(1) (2009), 383–405.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Amit Mehta.

About this article

Cite this article

Mehta, R.A., Tang, X. From double Lie groupoids to local Lie 2-groupoids. Bull Braz Math Soc, New Series 42, 651–681 (2011). https://doi.org/10.1007/s00574-011-0033-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-011-0033-4

Keywords

Mathematical subject classification

Navigation