Skip to main content

Advertisement

Log in

Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Soil salinization due to sea level rise and groundwater irrigation has become an important agronomic problem in many parts of the world. Symbiosis between crop species and arbuscular mycorrhizal fungi (AMF) may alleviate salt stress-induced detrimental effects on crop growth and yield, for example, through helping the host plant to selectively absorb potassium while avoiding uptake of excessive sodium. Here, we performed a greenhouse experiment to evaluate growth, grain yield, and salt tolerance of a Bangladeshi rice cultivar under three levels of salt stress (0, 75, and 120 mM) after inoculation with three different AMF species from three different genera (Funnelliformis mosseae (BEG12), Acaulospora laevis (BEG13), and Gigaspora margarita (BEG34)), singly and in combination. We found that under salt stress, AMF inoculation enhanced total chlorophyll concentration, shoot K+/Na+ ratio, and lowered shoot Na+/root Na+ ratio, accompanied by increased root biomass, spikelet fertility, and grain yield compared with the non-inoculated control plants. Specifically, we found that the combination of BEG13 and BEG34 increased rice yield by 125 and 143% as compared with the non-inoculated controls, at the 75 and 120mM salt levels, respectively. In general, the low AMF diversity treatments (one species or a combination of two AMF species) were found to be the most effective in mediating salt stress tolerance for the majority of the measured crop performance variables. Overall, our results indicate that specific AMF species can promote the salt tolerance and productivity of rice, likely by increasing photosynthetic efficiency and restricting Na+ uptake and transport from root to shoot in AMF-inoculated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel Latef AAH, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic (Amsterdam) 127:228–233

    CAS  Google Scholar 

  • Ahmed MF, Haider MZ (2014) Impact of salinity on rice production in the south-west region of Bangladesh. Environ Sci 9:135–141

    Google Scholar 

  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I (2015) Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22:4099–4121

    CAS  Google Scholar 

  • Bandumula N (2018) Rice production in Asia: key to global food security. Proc Natl Acad Sci India Sect B - Biol Sci 88:1323–1328

    Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr 13:123–141

    Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    PubMed  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    CAS  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, MacE GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    CAS  PubMed  Google Scholar 

  • Chan WF, Li H, Wu FY, Wu SC, Wong MH (2012) Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater 262:1116–1122

    PubMed  Google Scholar 

  • Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24:611–625

    CAS  PubMed  Google Scholar 

  • Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ (2017) Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:1–11

    Google Scholar 

  • Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Augé RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528

    CAS  PubMed  Google Scholar 

  • Crossay T, Majorel C, Redecker D, Gensous S, Medevielle V, Durrieu G, Cavaloc Y, Amir H (2019) Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza 29:325–339

    PubMed  Google Scholar 

  • Daniels BA, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. Methods Princ mycorrhizal Res:29–35

  • Edathil TT, Manian S, Udaiyan K (1996) Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum mill.). Agric Ecosyst Environ 59:63–68

    Google Scholar 

  • Engelmoer DJP, Behm JE, Toby Kiers E (2014) Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol 23:1584–1593

    CAS  PubMed  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM (2013a) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782

    CAS  PubMed  Google Scholar 

  • Estrada B, Barea JM, Aroca R, Ruiz-lozano JM (2013b) A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil:333–349

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress : a review. Ann Bot 104:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    CAS  PubMed  Google Scholar 

  • FAO (2015) Status of the World’s soil resources

  • Fileccia V, Ruisi P, Ingraffia R, Giambalvo D, Frenda AS, Martinelli F (2017) Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. PLoS One 12:1–15

    Google Scholar 

  • Gaur A, Adholeya A (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43–48

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    CAS  PubMed  Google Scholar 

  • Hajiboland R, Aliasgharzad N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    CAS  Google Scholar 

  • Hart MM, Forsythe J, Oshowski B, Bücking H, Jansa J, Kiers ET (2013) Hiding in a crowd — does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis ? Symbiosis 59:47–56

    Google Scholar 

  • Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D, Abd Allah EF (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25:1102–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:1–18

    Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LSP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:1–19

    Google Scholar 

  • Hussain S, Zhang JH, Zhong C, Zhu LF, Cao XC, Yu SM, Allen Bohr J, Hu JJ, Jin QY (2017) Effects of salt stress on rice growth, development characteristics, and the regulating ways: a review. J Integr Agric 16:2357–2374

    CAS  Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena V, Maurya B, Verma J, Meena R (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi

    Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    CAS  PubMed  Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109

    Google Scholar 

  • Juge C, Samson J, Bastien C, Vierheilig H, Coughlan A, Piché Y (2002) Breaking dormancy in spores of the arbuscular mycorrhizal fungus Glomus intraradices: a critical cold-storage period. Mycorrhiza 12:37–42

    PubMed  Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turkish J Agric For 31:355–362

    CAS  Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    PubMed  Google Scholar 

  • Klironomos JN, Hart MM, Gurney JE, Moutoglis P (2001) Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying. Can J Bot 79:1161–1166

    Google Scholar 

  • Kumar K, Kumar M, Kim SR, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6:1–15

    Google Scholar 

  • Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    CAS  PubMed  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K + nutrition and Na + toxicity : the basis of cellular K + / Na + ratios. Ann Bot 84:123–133

    CAS  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619

    Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    CAS  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective-measure of colonization of roots. New Phytol 115:495–501

    Google Scholar 

  • Millar NS, Bennett AE (2016) Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182:625–641

    PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  PubMed  Google Scholar 

  • Mo Y, Wang Y, Yang R, Zheng J, Liu C, Li H, Ma J, Zhang Y, Wei C, Zhang X (2016) Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front Plant Sci 7

  • Namdari A, Baghbani Arani A, Moradi A (2018) Arbuscular mycorrhizal (Funneliformis mosseae) improves alfalfa (Medicago sativa L.) re-growth ability in saline soil through enhanced nitrogen remobilization and improved nutritional balance. J Cent Eur Agric 19:166–183

    Google Scholar 

  • Navarro JM, Pérez-Tornero O, Morte A (2014) Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol 171:76–85

    CAS  PubMed  Google Scholar 

  • Parvin S, Van Geel M, Yeasmin T, Lievens B, Honnay O (2019) Variation in arbuscular mycorrhizal fungal communities associated with lowland rice (Oryza sativa) along a gradient of soil salinity and arsenic contamination in Bangladesh. Sci Total Environ 686:546–554

    CAS  PubMed  Google Scholar 

  • Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83

    CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673–684

    CAS  PubMed  Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    CAS  PubMed  Google Scholar 

  • Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Godfray HCJ, Goulson D, Hartley S, Lampkin N, Morris C, Pierzynski G, Prasad PVV, Reganold J, Rockström J, Smith P, Thorne P, Wratten S (2018) Global assessment of agricultural system redesign for sustainable intensification. Nat Sustain 1:441–446

    Google Scholar 

  • Radanielson AM, Gaydon DS, Li T, Angeles O, Roth CH (2018) Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. Eur J Agron 100:44–55

    CAS  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcon C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated in Posidonia oceanica cadmium induces changes in DNA physiological response to salinity in plants: new challenges in methylation and chromatin patterning physiological and molecular studies. J Exp Bot 63:695–709

    Google Scholar 

  • Searchinger T, Waite R, Hanson C, Ranganathan J (2019) World resources report: Creating a Sustainable Food Future - A menu of solutions to feed nearly 10 billion people by 2050. World Resour Inst 1:558

    Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. P 43–53. Springer, Cham. 43–53

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430

    PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    CAS  PubMed  Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366

    Google Scholar 

  • Solaiman MZ, Hirata H (1998) Glomus-wetland rice mycorrhizas influenced by nursery inoculation techniques under high fertility soil conditions. Biol Fertil Soils 27:92–96

    Google Scholar 

  • Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, Lassaletta L, de Vries W, Vermeulen SJ, Herrero M, Carlson KM, Jonell M, Troell M, DeClerck F, Gordon LJ, Zurayk R, Scarborough P, Rayner M, Loken B, Fanzo J, Godfray HCJ, Tilman D, Rockström J, Willett W (2018) Options for keeping the food system within environmental limits. Nature 562:519–525

    CAS  PubMed  Google Scholar 

  • Sunderland TCH, Rowland D (2018) Forests, land use, and challenges to climate stability and food security. Sustainable Food and Agriculture, pp 95–116

  • Takai T, Kondo M, Yano M, Yamamoto T (2010) A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice 3:172–180

    Google Scholar 

  • Talaat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291

    CAS  Google Scholar 

  • Van Geel M, De Beenhouwer M, Lievens B, Honnay O (2016) Crop-specific and single-species mycorrhizal inoculation is the best approach to improve crop growth in controlled environments. Agron Sustain Dev 36

  • Varma A, Prasad R, Tuteja N (2018) Mycorrhiza - nutrient uptake, biocontrol, ecorestoration: fourth edition, Mycorrhiza - nutrient uptake. Fourth Edition, Biocontrol, Ecorestoration

    Google Scholar 

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    PubMed  Google Scholar 

  • Wang FY, Liu RJ, Lin XG, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137

    PubMed  Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2017) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 35:36

    Google Scholar 

  • Watanarojanaporn N, Boonkerd N, Tittabutr P, Longtonglang A, Young JPW, Teaumroong N (2013) Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microbes Environ 28:316–324

    PubMed  PubMed Central  Google Scholar 

  • West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Cassidy ES, Johnston M, Macdonald GK, Ray DK, Siebert S (2014) Leverage points for improving global food security and the environment 345, 1–5

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561

    PubMed  Google Scholar 

  • Wu QS, Srivastava AK, Zou YN (2013) AMF-induced tolerance to drought stress in citrus: a review. Sci Hortic (Amsterdam). 164:77–87

    CAS  Google Scholar 

  • Xu H, Lu Y, Tong S (2018) Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress. Emirates J Food Agric 30:199–204

    Google Scholar 

  • Yoshida S, Douglas AF, James HC, Kwanchai AG (1976) Routine procedure for growing rice plants in culture solution. Laboratory manual for physiological studies of rice. Int. Rice Res. Institute, los Banños 61–66

  • Zhang XH, Zhu Y-G, Chen BD, Lin AJ, Smith SE, Smith FA (2005) Arbuscular Mycorrhizal Fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr 28:2065–2077

    CAS  Google Scholar 

  • Zhang X, Wang L, Ma F, Yang J, Su M (2017) Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.). J Sci Food Agric 97:2919–2925

    CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

  • Zhu XQ, Wang CY, Chen H, Tang M (2014) Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica 52:247–252

    CAS  Google Scholar 

  • Zörb C, Geilfus CM, Dietz KJ (2019) Salinity and crop yield. Plant Biol 21:31–38

    PubMed  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Daan Van Gils and Kasper Van Acker for their assistance in the laboratory and with the greenhouse experiment.

Funding

This research was financially supported by IRO, KU Leuven’s Interfaculty Council for Development Cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanaz Parvin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvin, S., Van Geel, M., Yeasmin, T. et al. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza 30, 431–444 (2020). https://doi.org/10.1007/s00572-020-00957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-020-00957-9

Keywords

Navigation