Skip to main content
Log in

A microfluidic device for generation of chemical gradients

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A microfluidic device was developed for generating chemical concentration gradients by integrating PEG-diacrylate (PEGDA) hydrogel separators in a Polydimethylsiloxane (PDMS) chamber. In this device, the linear chemical gradient in the central culture channel is achieved by the diffusion of two side flow streams which are separated by hydrogel separators. Two long serpentine channels feed into a transition zone to balance the pressure of both streams insuring a stable gradient is formed and maintained before it reaches the central culture channel. This device provides a reproducible, controllable, long-term steady and linear chemical concentration gradient without complex supports. Additionally, the concentration gradient can be controlled by varying the hydrogel thickness, thereby changing the amount of diffusion through the hydrogels. This device can be modified to create different chemical gradients for a variety of cell culture applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abhyankar VV et al (2006) Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6(3):389–393

    Article  Google Scholar 

  • Abhyankar VV et al (2008) A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab Chip 8(9):1507–1515

    Article  Google Scholar 

  • Akeley DF, Gosting LJ (1953) Studies of the diffusion of mixed solutes with the Gouy diffusiometer. J Am Chem Soc 75(22):5685–5696

    Article  Google Scholar 

  • Baudenbacher FJ et al. (2010) Bioreactors with substance injection capacity. Google Patents

  • Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4(1):261–286

    Article  Google Scholar 

  • Bauer M et al (2010) 3D microchannel co-culture: method and biological validation. Integr Biol 2(7–8):371–378

    Article  Google Scholar 

  • Bhattacharjee N et al (2010) A neuron-benign microfluidic gradient generator for studying the response of mammalian neurons towards axon guidance factors. Integr Biol 2(11–12):669–679

    Article  Google Scholar 

  • Cheng S-Y et al (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7(6):763–769

    Article  Google Scholar 

  • Chung S et al (2010) Microfluidic platforms for studies of angiogenesis, cell migration, and cell–cell interactions. Ann Biomed Eng 38(3):1164–1177

    Article  Google Scholar 

  • Cimetta E et al (2010) Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab Chip 10(23):3277–3283

    Article  Google Scholar 

  • Cooksey GA, Sip CG, Folch A (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9(3):417–426

    Article  Google Scholar 

  • Cuchiara MP et al (2010) Multilayer microfluidic PEGDA hydrogels. Biomaterials 31(21):5491–5497

    Article  Google Scholar 

  • Diao J et al (2006) A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6(3):381–388

    Article  MathSciNet  Google Scholar 

  • Frevert CW et al (2006) Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve. Lab Chip 6(7):849–856

    Article  Google Scholar 

  • Haessler U et al (2009) An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed Microdevices 11(4):827–835

    Article  Google Scholar 

  • Hsu C-H (2007) Isothermal titration calorimetric studies of the non-fouling interaction mechanism between proteins and polyethyleneglycol

  • Jedrych E et al (2011) Evaluation of cytotoxic effect of 5-fluorouracil on human carcinoma cells in microfluidic system. Sens Actuators B: Chem 160(1):1544–1551

    Article  Google Scholar 

  • Kim M, Kim T (2010) Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays. Anal Chem 82(22):9401–9409

    Article  Google Scholar 

  • Kim MS, Yeon JH, Park J-K (2007) A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed Microdevices 9(1):25–34

    Article  Google Scholar 

  • Kim T, Pinelis M, Maharbiz MM (2009a) Generating steep, shear-free gradients of small molecules for cell culture. Biomed Microdevices 11(1):65–73

    Article  Google Scholar 

  • Kim D et al (2009b) Selective and tunable gradient device for cell culture and chemotaxis study. Lab Chip 9(12):1797–1800

    Article  Google Scholar 

  • Koh W-G, Revzin A, Pishko MV (2002) Poly (ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18(7):2459–2462

    Article  Google Scholar 

  • Kothapalli CR et al (2011) A high-throughput microfluidic assay to study neurite response to growth factor gradients. Lab Chip 11(3):497–507

    Article  Google Scholar 

  • Landau L Fluid mechanics: (course of theoretical physics). In: Landau LD, Lifshitz EM, Publisher: Bu1987: Butterworth-Heinemann, vol 6

  • Li GN, Liu J, Hoffman-Kim D (2008) Multi-molecular gradients of permissive and inhibitory cues direct neurite outgrowth. Ann Biomed Eng 36(6):889–904

    Article  Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499

    Article  Google Scholar 

  • Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem 1:423–449

    Article  Google Scholar 

  • Millet LJ et al (2010) Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip 10(12):1525–1535

    Article  Google Scholar 

  • Mosadegh B et al (2007) Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Langmuir 23(22):10910–10912

    Article  MATH  Google Scholar 

  • Park JY et al (2009) Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow. Lab Chip 9(15):2194–2202

    Article  Google Scholar 

  • Quinn C et al (1995) Kinetics of glucose delivery to subcutaneous tissue in rats measured with 0.3-mm amperometric microsensors. Am J Physiol 269(1):E155–E161

    Google Scholar 

  • Saadi W et al (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 9(5):627–635

    Article  MathSciNet  Google Scholar 

  • Shamloo A et al (2008) Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292–1299

    Article  Google Scholar 

  • Sip CG, Bhattacharjee N, Folch A (2011) A modular cell culture device for generating arrays of gradients using stacked microfluidic flows. Biomicrofluidics 5(2):022210

    Article  Google Scholar 

  • Tan DC-W, Yung L-YL, Roy P (2010) Controlled microscale diffusion gradients in quiescent extracellular fluid. Biomed Microdevices 12(3):523–532

    Article  Google Scholar 

  • Tian F-B et al (2013) Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis. Comput Biol Med 43(9):1098–1113

    Article  Google Scholar 

  • Tsang VL, Bhatia SN (2007) Fabrication of three-dimensional tissues, in tissue engineering II, Springer. p. 189–205

  • Walker GM et al (2005) Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6):611–618

    Article  Google Scholar 

  • Wang CJ et al (2008) A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab Chip 8(2):227–237

    Article  Google Scholar 

  • Wu H, Huang B, Zare RN (2006) Generation of complex, static solution gradients in microfluidic channels. J Am Chem Soc 128(13):4194–4195

    Article  Google Scholar 

  • Yang C-G et al (2011) A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay. Lab Chip 11(19):3305–3312

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2011CB707605), the Natural Science Foundation of Jiangsu Province (BK20140726), and Young Teachers Fund of Nanjing Agricultural University (0601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., An, Q., Gao, Y. et al. A microfluidic device for generation of chemical gradients. Microsyst Technol 21, 1797–1804 (2015). https://doi.org/10.1007/s00542-014-2287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2287-4

Keywords

Navigation