Skip to main content
Log in

Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We present the first to date weighted and mixed-norm Sobolev estimates for fully nonlinear elliptic and parabolic equations in the whole space under a relaxed convexity condition with almost VMO dependence on space-time variables. The corresponding interior and boundary estimates are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedek, A., Panzone, R.: The space \(L^{p}\), with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MathSciNet  Google Scholar 

  2. Bramanti, M., Cerutti, M.C.: \(W_p^{1,2}\) solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficients. Commun. Partial Differ. Equ. 18(9–10), 1735–1763 (1993)

    Article  Google Scholar 

  3. Byun, S.-S., Lee, M., Palagachev, D.K.: Hessian estimates in weighted Lebesgue spaces for fully nonlinear elliptic equations. J. Differ. Equ. 260(5), 4550–4571 (2016)

    Article  MathSciNet  Google Scholar 

  4. Byun, S.-S., Jehan, O., Wang, L.: \(W^{2, p}\) estimates for solutions to asymptotically elliptic equations in nondivergence form. J. Differ. Equ. 260(11), 7965–7981 (2016)

    Article  Google Scholar 

  5. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  6. Cejas, M.E., Durán, R.G.: Weighted a priori estimates for elliptic equations. Stud. Math. 243(1), 13–24 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chiarenza, F., Frasca, M., Longo, P.: Interior \(W^{2, p}\) estimates for nondivergence elliptic equations with discontinuous coefficients. Ric. Mat. 40(1), 149–168 (1991)

    MATH  Google Scholar 

  8. Chiarenza, F., Frasca, M., Longo, P.: \(W^{2, p}\)-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336(2), 841–853 (1993)

    MATH  Google Scholar 

  9. Crandall, M.G., Kocan, M., Świȩch, A.: \(L^p\)-theory for fully nonlinear uniformly parabolic equations. Commun. Partial Differ. Equ. 25(11–12), 1997–2053 (2000)

    Article  Google Scholar 

  10. Dong, H., Gallarati, C.: Higher-order parabolic equations with vmo assumptions and general boundary conditions with variable leading coefficients. Int. Math. Res. Not. p. rny084 (2018). https://doi.org/10.1093/imrn/rny084

  11. Dong, H., Kim, D.: On \(L_p\)-estimates for elliptic and parabolic equations with \(A_p\) weights. Trans. Am. Math. Soc. 370(7), 5081–5130 (2018)

    Article  Google Scholar 

  12. Dong, H., Krylov, N.V., Li, X.: On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains. Algebra Anal. 24(1), 53–94 (2012)

    MathSciNet  Google Scholar 

  13. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, Second edn. Springer, New York (2009)

    Book  Google Scholar 

  14. Kozlov, V., Nazarov, A.: The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients. Math. Nachr. 282(9), 1220–1241 (2009)

    Article  MathSciNet  Google Scholar 

  15. Krylov, N.V.: The heat equation in \(L_q((0, T), L_p)\)-spaces with weights. SIAM J. Math. Anal. 32(5), 1117–1141 (2001)

    Article  MathSciNet  Google Scholar 

  16. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics, vol. 96. American Mathematical Society, Providence (2008)

    Book  Google Scholar 

  17. Krylov, N.V.: On the existence of \(W_p^2\) solutions for fully nonlinear elliptic equations under relaxed convexity assumptions. Commun. Partial Differ. Equ. 38(4), 687–710 (2013)

    Article  Google Scholar 

  18. Krylov, N.V.: On the existence of \(W^{1,2}_p\) solutions for fully nonlinear parabolic equations under either relaxed or no convexity assumptions. Nonlinear Analysis in Geometry and Applied Mathematics. Part 2. Harvard University, Center of Mathematical Sciences and Applications, Series in Mathematics, pp. 103–133. International Press, Somerville (2018)

    Google Scholar 

  19. Krylov, N.V.: Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations. Mathematical Surveys and Monographs, vol. 233. American Mathematical Society, Providence (2018)

    Book  Google Scholar 

  20. Krylov, N.V.: On parabolic PDEs and SPDEs in Sobolev spaces \(W^2_P\) without and with weights. Topics in Stochastic Analysis and Nonparametric Estimation. The IMA Volumes in Mathematics and its Applications, vol. 145, pp. 151–197. Springer, New York (2008)

    Chapter  Google Scholar 

  21. Krylov, N.V.: On Bellman’s equations with VMO coefficients. Methods Appl. Anal. 17(1), 105–121 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Lin, F.-H.: Second derivative \(L^p\)-estimates for elliptic equations of nondivergent type. Proc. Am. Math. Soc. 96(3), 447–451 (1986)

    MATH  Google Scholar 

  23. Maugeri, A., Palagachev, D.K., Softova, L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Mathematical Research, vol. 109. Wiley, Berlin (2000)

    Book  Google Scholar 

  24. Rubio de Francia, J.L.: Factorization theory and \(A_{p}\) weights. Am. J. Math. 106(3), 533–547 (1984)

    Article  Google Scholar 

  25. Winter, N.: \(W^{2, p}\) and \(W^{1, p}\)-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations. Z. Anal. Anwend. 28(2), 129–164 (2009)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J., Zheng, S.: Lorentz estimates for asymptotically regular fully nonlinear parabolic equations. Math. Nachr. 291(5–6), 996–1008 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dong.

Additional information

Communicated by N. Trudinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Dong was partially supported by the NSF under agreement DMS-1600593.

Appendix

Appendix

Here we take \(\Omega =\Omega ^{1}\times \cdots \times \Omega ^{d}\), where \(\Omega ^j={\mathbb {R}}\) or \({\mathbb {R}}_+\), \(j=1,\ldots ,d\) and let \(\mu \) to be the Lebesgue measure on \(\Omega \). We take integers \(0= l_{0}<l_{1}<\ldots <l_{m}=d\) and express points in \(\Omega \) as

$$\begin{aligned} x=(x_{1},\ldots ,x_{d})=({\check{x}}_{1},\ldots ,{\check{x}}_{m}), \end{aligned}$$

where \({\check{x}}_{i}=(x_{l_{i-1}+1},\ldots , x_{l_{i}})\) and set

$$\begin{aligned} {\check{\Omega }}^{i}=\Omega ^{l_{i-1}+1} \times \cdots \times \Omega ^{l_{i}},\quad {\hat{\Omega }}^{i}= \Omega ^{l_{i-1}+1}\times \cdots \times \Omega ^{d}, \end{aligned}$$

\({\hat{x}}_{i}=(x_{l_{i}+1},\ldots ,x_{d})\). Take \(k(1),\ldots ,k(d)\in \{1,2,\ldots \}\) and, for \(n\in {\mathbb {Z}}\), let

$$\begin{aligned} {\check{C}}_{n}^{i}=[0,2^{-nk(l_{i-1}+1)})\times \cdots \times [0,2^{-nk(l_{i})}) \end{aligned}$$

be a subset of \({\check{\Omega }}^{i}\) and \(C_{n}={\check{C}}_{n}^{1}\times \cdots \times {\check{C}}_{n}^{m}\). By \(A_{p}\)-weights on \({\check{\Omega }}^{i}\) we mean the \(A_{p}\)-weights relative to all translates of \({\check{C}}_{n}^{i}\), \(n\in {\mathbb {Z}}\), belonging to \({\check{\Omega }}^{i}\), and, naturally, \(A_{p}\)-weights on \(\Omega \) are defined using all translates of \(C_{n}\), \(n\in {\mathbb {Z}}\), belonging to \( \Omega \).

Theorem 7.11

Let \(K_0,p_{k}\in (1,\infty )\), \(w^k\in A_{p_{k}}( {\check{\Omega }}^k)\), \([w^k]_{p_{k}}\le K_0\), \(k=1,\ldots ,m\), and ug be measurable functions on \(\Omega \). Then there exists a constant \(\Lambda _0=\Lambda _0(d,p_1,\ldots ,p_{m}, k(1), \ldots ,k(d),K_0)\ge 1\) such that if

$$\begin{aligned} \Vert u\Vert _{L_{p_{1}}(w\,d\mu )} \le N_0\Vert g\Vert _{L_{p_{1}}(w\,d\mu )} \end{aligned}$$

for some \(N_0\in (0,\infty )\) and for every \(w\in A_{p_{1}}(\Omega )\) with \([w]_{p_{1}}\le \Lambda _0\), then we have

$$\begin{aligned} \Vert u\Vert _{L_{p_{1},\ldots ,p_{m}}(w^1,\ldots ,w^{m})}\le N\Vert g\Vert _{L_{p_{1},\ldots ,p_{m}}(w^1,\ldots ,w^m)}, \end{aligned}$$

where the norms are defined as in (3.18) replacing \(dx_{i}\) by \(w^{i}({\check{x}}_{i})\,d{\check{x}}_{i}\), the constant N depends only on d, \(p_1,\ldots ,p_m, k(1),\ldots ,k(d)\), \(K_0\), and \(N_0\).

Proof

We follow the proof of Corollary 2.7 in [11]. Recall the extrapolation theorem of Rubio de Francia [24] which says that for any constant \(\Lambda _{j }\in (1, \infty )\), \(j= 1,\ldots ,m\), there exists a constant \(\Lambda _{j-1}=\Lambda _{j-1}(d-j,p_{j},p_{j+1}, K_{0} \Lambda _{j } )\in ( 1, \infty )\) (we drop its dependence on the k(i)’s) such that, if

  1. (a)

    for two nonnegative functions \(U_{j}\) and \(G_{j}\) on \({\hat{\Omega }}^{j+1}\),

    $$\begin{aligned} \int _{{\hat{\Omega }}^{j+1} } U_{j}^{p_{j}}w({\hat{x}}_{j+1} )\, d{\hat{x}}_{j+1} \le N_{j}\int _{{\hat{\Omega }}^{j+1} } G_{j}^{p_{j}}w({\hat{x}}_{j+1} )\, d{\hat{x}}_{j+1} \end{aligned}$$

    for some \(N_j\in (0,\infty )\) and for every \(w\in A_{p_{j}}({\hat{\Omega }}^{j+1} )\) with \([w]_{p_{j}}\le \Lambda _{j-1}\), then

  2. (b)

    we have

    $$\begin{aligned} \int _{{\hat{\Omega }}^{j+1} } U_{j}^{p_{j+1}}w({\hat{x}}_{j+1} )\, d{\hat{x}}_{j+1} \le N_{j+1}\int _{{\hat{\Omega }}^{j+1} } G_{j}^{p_{j+1}}w({\hat{x}}_{j+1} )\, d{\hat{x}}_{j+1} \end{aligned}$$
    (7.3)

    for some \(N_{j+1}\in (0,\infty )\), depending only on d, j, \(K_0\Lambda _j\), \(p_{j}\), \(p_{j+1}\), and \(N_{j}\), and for every \(w\in A_{p_{j+1}}({\hat{\Omega }}^{j+1} )\) with \([w]_{p_{j+1}}\le K_{0}\Lambda _{j}\).

\(\square \)

In this form the theorem is proved in [11]. We define \(\Lambda _{m-1}=1\) and find all \(\Lambda _{j}\), \(j=0,1,\ldots ,m-1\). Then assume that \(m\ge 2\) and define \(U_{0}(x)=u(x)\),

$$\begin{aligned} U_{j}({\hat{x}}_{j+1})= \left( \int _{{\check{\Omega }}^{j}}U^{p_{j}}_{j-1}({\hat{x}}_{j}) \, w^{j}({\check{x}}_{j})\,d{\check{x}}_{j}\right) ^{1/p_{j}},\quad 1\le j\le m-1, \end{aligned}$$

and similarly we introduce \(G_{j}\)’s by taking g in place of u. To prove the theorem, it suffices to prove that (b) holds for \(j=m-1\) because \(w^{m}\in A_{p_{m}}({\check{\Omega }}^{m})\) and \([w^{ m}]_{p_{m}}\le K_{0} = K_{0}\Lambda _{m-1}\). We are going to use the induction on \(j=0,1,\ldots ,m-1\).

Observe that (b) holds for \(j=0\) by assumption. Suppose that it holds for a \(j\in \{0,1,\ldots ,m-2\}\). Then (7.3) also holds for

$$\begin{aligned} w({\hat{x}}_{j+1} ):=w^{j+1}({\check{x}}_{j+1})w({\hat{x}}_{j+2} ) \end{aligned}$$

if \(w^{j+1}\in A_{p_{j+1}}( {\check{\Omega }}^{j+1})\) and \(w({\hat{x}}_{j+2} ) \in A_{p_{j+1}}({\hat{\Omega }}^{j+2})\) with

$$\begin{aligned}{}[w^{j+1}]_{p_{j+1}}\le K_{0},\quad [w({\hat{x}}_{j+2} )]_{p_{j+1}}\le \Lambda _{j } \end{aligned}$$

because then \( [w({\hat{x}}_{j+1} )]_{p_{j+1}}\le K_{0}\Lambda _{j } \). Remarkably, this implies that (a) holds with \(j+1\) in place of j. Then (b) also holds with \(j+1\) in place of j. This justifies the induction and proves the theorem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Krylov, N.V. Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces. Calc. Var. 58, 145 (2019). https://doi.org/10.1007/s00526-019-1591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1591-3

Mathematics Subject Classification

Navigation