Skip to main content
Log in

Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove that if \({U\subset \mathbb {R}^n}\) is an open domain whose closure \({\overline U}\) is compact in the path metric, and F is a Lipschitz function on ∂U, then for each \({\beta \in \mathbb {R}}\) there exists a unique viscosity solution to the β-biased infinity Laplacian equation

$$\beta |\nabla u| + \Delta_\infty u=0$$

on U that extends F, where \({\Delta_\infty u= |\nabla u|^{-2} \sum_{i,j} u_{x_i}u_{x_ix_j} u_{x_j}}\). In the proof, we extend the tug-of-war ideas of Peres, Schramm, Sheffield and Wilson, and define the β-biased \({\epsilon}\)-game as follows. The starting position is \({x_0 \in U}\). At the kth step the two players toss a suitably biased coin (in our key example, player I wins with odds of \({\exp(\beta\epsilon)}\) to 1), and the winner chooses x k with \({d(x_k,x_{k-1}) < \epsilon}\). The game ends when \({x_k \in \partial U}\), and player II pays the amount F(x k ) to player I. We prove that the value \({u^{\epsilon}(x_0)}\) of this game exists, and that \({\|u^\epsilon - u\|_\infty \to 0}\) as \({\epsilon \to 0}\), where u is the unique extension of F to \({\overline{U}}\) that satisfies comparison with β-exponential cones. Comparison with exponential cones is a notion that we introduce here, and generalizing a theorem of Crandall, Evans and Gariepy regarding comparison with linear cones, we show that a continuous function satisfies comparison with β-exponential cones if and only if it is a viscosity solution to the β-biased infinity Laplacian equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronsson G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aronsson G.: On the partial differential equation \({u^2_x u_{xx} + 2u_x u_y u_{xy} + u^2_y u_{yy} = 0}\). Ark. Mat. 7, 395–425 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aronsson G.: Construction of singular solutions to the p-harmonic equation and its limit equation for p = ∞. Manuscr. Math. 56(2), 135–158 (1986)

    Article  MathSciNet  Google Scholar 

  4. Aronsson G., Crandall M.G., Juutinen P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N.S.) 41(4), 439–505 (2004) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barles G., Busca J.: Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Comm. Partial Differ. Equ. 26(11–12), 2323–2337 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barron E.N., Evans L.C., Jensen R.: The infinity Laplacian, Aronsson’s equation, and their generalizations. Trans. Am. Math. Soc. 360, 77–101 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Crandall, M.G., Evans, L.C.: A remark on infinity harmonic functions, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Valparaiso, 2000) (electronic). Electronic J. Diff. Equ., Conf. 6, 123–129 (2001)

  8. Crandall M.G., Evans L.C., Gariepy R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13(2), 123–139 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Crandall M.G., Ishii H., Lions P.-L.: User’s guide to viscosity solutions of second-order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Durrett R.: Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont, CA (1996)

    Google Scholar 

  11. Evans, L.C., Savin, O.: C 1,α regularity for infinity harmonic functions in two dimensions. Preprint http://math.berkeley.edu/~evans/

  12. Evans L.C., Yu Y.: Various properties of solutions of the infinity-Laplacian equation. Comm. Partial Differ. Equ. 30(7–9), 1401–1428 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jensen R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123(1), 51–74 (1993)

    Article  MATH  Google Scholar 

  14. Lazarus A.J., Loeb D.E., Propp J.G., Stromquist W.R., Ullman D.H.: Combinatorial games under auction play. Games Econ. Behav. 27(2), 229–264 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lazarus, A.J., Loeb, D.E., Propp, J.G., Ullman, D.: Richman games. In: Nowakowski, R.J. (ed.), Games of No Chance, MSRI Publications, vol. 29, 439–449. Cambridge University Press, Cambridge (1996)

  16. Lovász, L.: Random walks on graphs: a survey. In: Miklós, D., Sós, V.T., Szőnyi, T. (eds.) Combinatorics, Paul Erdős is Eighty, Vol. 2, pp. 353–398. János Bolyai Math. Soc., Budapest. http://www.cs.elte.hu/~lovasz/survey.html (1996)

  17. Lu G., Wang P.: A PDE perspective of the normalized Infinity Laplacian. Comm. Partial Differ. Equ. 33(10), 1788–1817 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lyons, R., Peres, Y.: Probability on Trees and Networks. (in preparation) version of November 25, 2009. http://mypage.iu.edu/~rdlyons

  19. Oberman A.M.: A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comput. 74(251), 1217–1230 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Peres Y., Schramm O., Sheffield S., Wilson D.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22, 167–210 (2009) arXiv:math.AP/0605002

    Article  MathSciNet  Google Scholar 

  21. Savin O.: C 1 regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal. 176, 351–361 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Peres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peres, Y., Pete, G. & Somersille, S. Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones. Calc. Var. 38, 541–564 (2010). https://doi.org/10.1007/s00526-009-0298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0298-2

Mathematics Subject Classification (2000)

Navigation