Skip to main content
Log in

On partial regularity of the borderline solution of semilinear parabolic problems

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The global, weak solutions for the semilinear problem (1) introduced in Ni-Sacks-Tavantzis (J. Differ. Eq. 54, 97–120 (1984)) are studied. Estimates on the Hausdorff dimension of their singular sets are found. As an application, it is shown that these solutions must blow up in finite time and become regular eventually when the nonlinearity is supercritical and the domain is convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball J. (1977). Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford Ser. 28: 473–486

    Article  MATH  MathSciNet  Google Scholar 

  2. Bebernes, J., Eberly, D.: Mathematical problems from combustion theory. In: Applied Mathematical Sciences. vol. 83. Springer, New York (1989)

  3. Caffarelli L., Kohn R. and Nirenberg L. (1982). Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35: 771–831

    Article  MATH  MathSciNet  Google Scholar 

  4. Cazenave, T., Haraux, A.: An introduction to semilinear evolution equations. In: Oxford Lecture Series in Mathematics and Its Applications, vol. 13. Clarendon Press, Oxford University Press, New York (1998)

  5. Cheng X (1991). Estimate of the singular set of the evolution problem for harmonic maps. J. Differ. Geom. 34: 169–174

    MATH  Google Scholar 

  6. Chou, K.S., Du, S.Z.: On partial regularity of the borderline solution of semilinear parabolic problems with critical growth (preprint) (2007)

  7. Lions P.L., Nussbaum R.D. and Figueiredo D.G. (1982). A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. 61(9): 41–63

    MATH  MathSciNet  Google Scholar 

  8. Fila, M.: Blow-up solutions of supercritical parabolic equations. In: Evolutionary Equations, vol. II. Handb. Differ. Equ. pp. 105–158 (2005)

  9. Fila M., Matano H. and Polčik P. (2005). Immediate regularization after blow-up. SIAM J. Math. Anal. 37: 752–776

    Article  MATH  MathSciNet  Google Scholar 

  10. Fujita H. (1996). On the blowing up of solutions of the Cauchy Problem for u t =  Δuu 1+α. J. Fac. Sci. Univ. Tokyo Sect. I, 13: 109–124

    Google Scholar 

  11. Galaktionov V. and Vazquez J.L. (1997). Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Comm. Pure. Appl. Math. 50: 1–67

    Article  MATH  MathSciNet  Google Scholar 

  12. Giga Y. (1986). A bound for global solutions of semilinear heat equations. Comm. Math. Phys. 103: 415–421

    Article  MATH  MathSciNet  Google Scholar 

  13. Giga Y. and Kohn R.V. (1987). Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36: 1–40

    Article  MATH  MathSciNet  Google Scholar 

  14. Kaplan S. (1963). On the growth of solutions of quasi-linear parabolic equations. Comm. Pure. Appl. Math. 16: 305–330

    Article  MATH  MathSciNet  Google Scholar 

  15. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasilinear equations of parabolic type. In: Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1967)

  16. Levine H.A. (1973). Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \({Pu_t = -Au + \mathcal{F}(u)}\) . Arch. Rational Mech. Anal. 51:371–386

    Article  MATH  MathSciNet  Google Scholar 

  17. Lions J.L. (1969). Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Gauthier-Villars, Dunod

    Google Scholar 

  18. Matano H. and Merle F. (2001). On nonexistence of type II blowup for a supercritical nonlinear heat equation. Comm. Pure Appl. Math. 57: 1494–1541

    Article  MathSciNet  Google Scholar 

  19. Mizoguchi N. (2005). Boundedness of global solutions for a supercritical semilinear heat equation and its application. Indiana Univ. Math. J. 54: 1047–1059

    Article  MATH  MathSciNet  Google Scholar 

  20. Mizoguchi N. (2005). Multiple blowup of solutions for a semilinear heat equation. Math. Ann. 331: 461–473

    Article  MATH  MathSciNet  Google Scholar 

  21. Mizoguchi N. (2005). Various behaviors of solutions for a semilinear heat equation after blowup. J. Funct. Anal. 220: 214–227

    Article  MATH  MathSciNet  Google Scholar 

  22. Ni W.-M., Sacks P. and Tavantzis J. (1984). On the asymptotic behavior of solutions of certain quasilinear parabolic equations. J. Differ Eq. 54: 97–120

    Article  MATH  MathSciNet  Google Scholar 

  23. Struwe M. (1988). On the evolution of harmonic maps in higher dimensions. J. Differ Geom. 28: 485–502

    MATH  MathSciNet  Google Scholar 

  24. Struwe, M.: Variational methods. In: A Series of Modern Surveys in Mathematics, vol. 34, 2nd edn. Springer, Berlin (1996)

  25. Velázquez J.J.L. (1993). Estimates on the (n−1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation. Indiana Univ. Math. J. 42: 445–476

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Seng Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, KS., Du, SZ. & Zheng, GF. On partial regularity of the borderline solution of semilinear parabolic problems. Calc. Var. 30, 251–275 (2007). https://doi.org/10.1007/s00526-007-0093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0093-x

Mathematical Subject Classification (2000)

Navigation