Skip to main content
Log in

A gene-level hybrid search framework for multiobjective evolutionary optimization

  • S.I. : ISCMI15
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a general framework of gene-level hybrid search (GLHS) for multiobjective evolutionary optimization. Regarding the existing hybrid search methods, most of them usually combine different search strategies and only select one search strategy to generate child solution. This kind of hybrid search is called as a chromosome-level approach in this paper. However, in GLHS, every gene bit of the child solution can be produced using different search strategies and such operation provides the enhanced exploration capability. As an example, two different DE mutation strategies are used in this paper as the variance candidate pool to implement the proposed GLHS framework, named GLHS-DE. To validate the effectiveness of GLHS-DE, it is embedded into one state-of-the-art algorithmic framework of MOEA/D, and is compared to a basic DE operator and two competitive hybrid search operators, i.e., FRRMAB and CDE, on 80 test problems with two to fifteen objectives. The experimental results show GLHS-DE obtains a superior performance over DE, FRRMAB and CDE on about 70 out of 80 test problems, indicating the promising application of our approach for multiobjective evolutionary optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbaszadeh P, Alipour A, Asadi S (2018) Development of a coupled wavelet transform and evolutionary Levenberg-Marquardt neural networks for hydrological process modeling. Comput Intell 34(1):175–199

    Article  MathSciNet  Google Scholar 

  2. Li M-W, Geng J, Hong W-C, Chen Z-Y (2017) A novel approach based on the Gauss-Vsvr with a new hybrid evolutionary algorithm and input vector decision method for port throughput forecasting. Neural Comput Appl 28:621–640

    Article  Google Scholar 

  3. Deniz A, Kiziloz H, Dokeroglu T (2017) Robust multiobjective evolutionary feature subset selection algorithm for binary classification using machine learning techniques. Neurocomputing 241:128–146

    Article  Google Scholar 

  4. Cai M, Liu D et al (2017) Evolutionary study on mobile cloud computing. Neural Comput Appl 28(9):2735–2744

    Article  Google Scholar 

  5. Martínez-Peñaloza M-G, Mezura-Montes E et al (2017) Improved multi-objective clustering with automatic determination of the number of clusters. Neural Comput Appl 28(8):2255–2275

    Article  Google Scholar 

  6. Lin Q, Chen J, Zhan Z et al (2016) A hybrid evolutionary immune algorithm for multiobjective optimization problems. IEEE Trans Evol Comput 20(5):711–729

    Google Scholar 

  7. Li K, Fialho A, Kwong S, Zhang Q (2014) Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 18(1):114–130

    Article  Google Scholar 

  8. Eshelman L, Schaffer J (1993) Real-coded genetic algorithms and interval-schemata. In: Darrell L, Whitley (ed) Proceedings of the workshop on foundations of genetic algorithms, Vail, CO, USA, pp 187–202

  9. Deb K, Agrawal R (1995) Simulated binary crossover for continuous search space. Complex Syst 9:115–148

    MathSciNet  MATH  Google Scholar 

  10. Ono I, Kita H, Kobayashi S (1999) A robust real-coded genetic algorithm using the unimodal normal distribution crossover augmented by uniform crossover: effects of self-adaptation of crossover probabilities. In: Proceedings of the genetic and evolutionary computation conference, pp 496–503

  11. Tsutsui S, Yamamura M, Higuchi T (1999) Multi-parent recombination with simplex crossover in real coded genetic algorithms. In: Proceedings of the genetic and evolutionary computation conference, 1, Orlando, FL, USA, pp 657–664

  12. Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188:895–911

    MathSciNet  MATH  Google Scholar 

  13. Deb K, Anand A, Joshi D (2002) A computationally efficient evolutionary algorithm for real-parameter optimization. Evol Compt 10:371–395

    Article  Google Scholar 

  14. Stron R, Price K (1997) Differential Evolution—a simple and efficient heuristic for global optimization over continues spaces. J Glob Optim 11:341–359

    Article  Google Scholar 

  15. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans Evolut Comput 12(2):284–302

    Article  Google Scholar 

  16. Lin Q, Zhu Q, Huang P et al (2015) A novel hybrid multi-objective immune algorithm with adaptive differential evolution. Comput Oper Res 62:95–111

    Article  MathSciNet  MATH  Google Scholar 

  17. Hernandez-Diaz A, Santana-Quintero L, Coello Coello C et al (2006) A new proposal for multi-objective optimization using differential evolution and rough sets theory. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp 675–682

  18. Civicioglu P, Besdok E (2018) A + Evolutionary search algorithm and QR decomposition based rotation invariant crossover operator. Expert Syst Appl 103:49–62

    Article  Google Scholar 

  19. Liagkouras K, Metaxiotis K (2017) An experimental analysis of a new two-stage crossover operator for multiobjective optimization. Soft Comput 21:721–751

    Article  Google Scholar 

  20. Deng L, Wang S et al (2018) DE-RCO: rotating crossover operator with multiangle searching strategy for adaptive differential evolution. IEEE Access 6:2970–2983

    Article  Google Scholar 

  21. Pant M, Ali M, Singh V (2008) Differential evolution with parent centric crossover. In: Proceedings of 2008 second UKSIM European symposium on computer modeling and simulation (EMS), Liverpool, UK, pp 141–146

  22. Tang L, Wang X (2013) A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems. IEEE Trans Evol Comput 17:20–45

    Article  Google Scholar 

  23. Lin Q, Liu Z, Yan Q et al (2016) Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Inf Sci 339:332–352

    Article  Google Scholar 

  24. Zhu Q, Lin Q, Chen J, Huang P (2015) A gene-level hybrid crossover operator for multiobjective evolutionary algorithm. In: 2015 second international conference on soft computing and machine intelligence (ISCMI 2015), pp 20–24

  25. Zhu Q, Lin Q, Du Z et al (2016) A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm. Inf Sci 345:177–198

    Article  Google Scholar 

  26. Bosman P, Thierens D (2003) The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans Evolut Comput 7(2):174–188

    Article  Google Scholar 

  27. Thakur M, Meghwani S, Jalota H (2014) A modified real coded genetic algorithm for constrained optimization. Appl Math Comput 235:292–317

    MathSciNet  MATH  Google Scholar 

  28. Chuang Y, Chen C, Huang C (2015) A real-coded genetic algorithm with a direction-based crossover operator. Inf Sci 305:320–348

    Article  Google Scholar 

  29. Ripon K, Kwong S, Man K (2007) A real-coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization. Inf Sci 177:632–654

    Article  MATH  Google Scholar 

  30. Li K, Kwong S, Deb K, Tang K, Man K (2013) Learning paradigm based on jumping genes: a general framework for enhancing exploration in evolutionary multiobjective optimization. Inf Sci 226:1–22

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu X, Shao J, Dong H (2011) On evolutionary strategy based on hybrid crossover operator. In: Proceedings of 2011 international conference on electronic and mechanical engineering and information technology (EMEIT), pp 2355–2358

  32. Li M, Yang S, Li K, Liu X (2014) Evolutionary algorithms with segment-based search for multiobjective optimization problems. IEEE Trans Cybern 44(8):1295–1313

    Article  Google Scholar 

  33. Qin A, Huang V, Suganthan P (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  34. Wu G, Mallipeddi R, Suganthan P, Wang R, Chen H (2016) Differential evolution with multi-population based ensemble of mutation strategies. Inf Sci 329:329–345

    Article  Google Scholar 

  35. Cui L, Li G, Lin Q, Chen J, Lu N (2016) Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations. Comput Oper Res 67:155–173

    Article  MathSciNet  MATH  Google Scholar 

  36. Li W et al (2017) A learning automata based multiobjective hyper-heuristic. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2017.2785346

    Google Scholar 

  37. Burke E, Gendreau M, Hyde M et al (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc 64(12):1695–1724

    Article  Google Scholar 

  38. Yoon H, Moon B (2002) An empirical study on the synergy of multiple crossover operators. IEEE Trans Evol Comput 6:212–223

    Article  Google Scholar 

  39. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary multiobjective optimization, pp 105–145

  40. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE T Evolut Comput 10(5):477–506

    Article  MATH  Google Scholar 

  41. Bosman P, Thierens D (2003) The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans Evolut Comput 7(2):174–188

    Article  Google Scholar 

  42. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  43. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  44. While R, Bradstreet L, Barone L (2012) A fast way of calculating exact hypervolumes. IEEE Trans Evol Comput 16(1):86–95

    Article  Google Scholar 

  45. Bader J, Zitzler E (2011) HyPE: an algorithm for fast hypervolume-based many-objective optimization. Evol Compt 19(1):45–76

    Article  Google Scholar 

  46. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE T Evolut Comput 11(6):712–731

    Article  Google Scholar 

  47. Li K, Deb K, Zhang Q, Kwong S (2015) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput 19(5):694–716

    Article  Google Scholar 

  48. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1(6):80–83

    Article  MathSciNet  Google Scholar 

  49. Li K, Zhang Q, Kwong S et al (2014) Stable matching-based selection in evolutionary multiobjective optimization. IEEE Trans Evol Comput 18(6):909–923

    Article  Google Scholar 

  50. Qi Y, Ma X, Liu F et al (2014) MOEA/D with adaptive weight adjustment. Evol Comput 22(2):231–264

    Article  Google Scholar 

  51. Wang L, Zhang Q (2016) Constrained subproblems in decomposition based multiobjective evolutionary algorithm. IEEE Trans Evol Comput 20(3):475–480

    Article  Google Scholar 

  52. Jiang S, Yang S (2016) An improved multiobjective optimization evolutionary algorithm based on decomposition for complex pareto fronts. IEEE Trans Cybern 46(2):421–437

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Funds of the National Natural Science Foundation of China under Key Program under Grant U1713212, the National Natural Science Foundation of China under Grant 61672358, the Natural Science Foundation of Guangdong Province under Grant 2017A030313338, and the Major Fundamental Research Project in the Science and Technology Plan of Shenzhen under Grants JCYJ20170817102218122 and JCYJ20170302154032530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuzhen Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Lin, Q. & Chen, J. A gene-level hybrid search framework for multiobjective evolutionary optimization. Neural Comput & Applic 30, 759–773 (2018). https://doi.org/10.1007/s00521-018-3563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3563-5

Keywords

Navigation