Skip to main content
Log in

Evolving models of Lyme disease spirochete gene regulation

  • Review Article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

The spirochete Borrelia burgdorferi, the causative agent of Lyme disease (Lyme borreliosis), is well-adapted to maintain a natural cycle of alternately infecting vertebrates and blood-sucking ticks. During this cycle, B. burgdorferi interacts with a broad spectrum of vertebrate and arthropod tissues, acquires nutrients in diverse environments and evades killing by vertebrate and tick immune systems. The bacterium also senses when situations occur that necessitate transmission between hosts, such as when an infected tick is taking a blood meal from a potential host. To accurately accomplish the requirements necessary for survival in nature, B. burgdorferi must be keenly aware of its surroundings and respond accordingly. In this review, we trace studies performed to elucidate regulatory mechanisms employed by B. burgdorferi to control gene expression, and the development of models or "paradigms" to explain experimental results. Through comparisons of five borrelial gene families, it is readily apparent that each is controlled through a distinct mechanism. Furthermore, those results indicate that current models of interpreting in vitro data cannot accurately predict all aspects of B. burgdorferi environmental sensing and gene regulation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Indest KJ, Ramamoorthy R, Philipp MT (2001) Transcriptional regulation in spirochetes of medical importance. In: Saier MH, García-Lara J (eds) The spirochetes: molecular and cellular biology. Horizon Press, Oxford, pp 159–170

    Google Scholar 

  • Pal U, Fikrig E (2003) Adaptation of Borrelia burgdorferi in the vector and vertebrate host. Microbes Infect 5: 659–666

    Article  PubMed  Google Scholar 

  • Seshu J, Skare JT (2001) The many faces of Borrelia burgdorferi. In: Saier MH, García-Lara J (eds) The spirochetes: molecular and cellular biology. Horizon Press, Oxford, pp 147–158

    Google Scholar 

  • Kuhn TS (1970) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA (1995) Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci USA 92: 2909–2913

    Article  CAS  PubMed  Google Scholar 

  • Gilmore RD Jr, Piesman J (2000) Inhibition of Borrelia burgdorferi migration from the midgut to the salivary glands following feeding by ticks on OspC-immunized mice. Infect Immun 68: 411–414

    Article  CAS  PubMed  Google Scholar 

  • Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM, et al (2004) Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci USA 101: 3142–3147

    Article  CAS  PubMed  Google Scholar 

  • Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, et al (2004) OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113: 220–230

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, et al (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436: 573–577

    Article  CAS  PubMed  Google Scholar 

  • Rosa PA (2005) Lyme disease agent borrows a practical coat. Nat Med 11: 831–832

    Article  CAS  PubMed  Google Scholar 

  • Schwan TG, Piesman J (2000) Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol 38: 382–388

    CAS  PubMed  Google Scholar 

  • Miller JC, von Lackum K, Babb K, McAlister JD, Stevenson B (2003) Temporal analysis of Borrelia burgdorferi Erp protein expression throughout the mammal-tick infectious cycle. Infect Immun 71: 6943–6952

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi J, Piesman J, de Silva AM (2001) Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc Natl Acad Sci USA 98: 670–675

    Article  CAS  PubMed  Google Scholar 

  • Crippa M, Rais O, Gern L (2002) Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector Borne Zoon Dis 2: 3–9

    Article  Google Scholar 

  • des Vignes F, Piesman J, Heffernan R, Schultze TL, Stafford KC, Fish D (2001) Effect of tick removal on transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis nymphs. J Inf Dis 183: 773–778

    Article  CAS  Google Scholar 

  • Piesman J, Maupin GO, Campos EG, Happ CM (1991) Duration of adult female Ixodes dammini attachment and transmission of Borrelia burgdorferi, with description of a needle aspiration isolation method. J Infect Dis 163: 895–897

    CAS  PubMed  Google Scholar 

  • Sood SK, Salzman MB, Johnson BJB, Happ CM, Feig K, Carmody L, et al (1997) Duration of tick attachment as a predictor of the risk of Lyme disease in an area in which Lyme disease is endemic. J Infect Dis 175: 996–999

    CAS  PubMed  Google Scholar 

  • Konkel ME, Tilly K (2000) Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2: 157–166

    Article  CAS  PubMed  Google Scholar 

  • Stevenson B, Schwan TG, Rosa PA (1995) Temperaturerelated differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63: 4535–4539

    CAS  PubMed  Google Scholar 

  • Barthold SW, Fikrig E, Bockenstedt LK, Persing DH (1995) Circumvention of outer surface protein A immunity by host-adapted Borrelia burgdorferi. Infect Immun 63: 2255–2261

    CAS  PubMed  Google Scholar 

  • Burkot TR, Piesman J, Wirtz RA (1994) Quantitation of the Borrelia burgdorferi outer surface protein A in Ixodes scapularis: fluctuations during the tick life cycle, doubling times and loss while feeding. J Infect Dis 170: 883–889

    CAS  PubMed  Google Scholar 

  • Cassatt DR, Patel NK, Ulbrandt ND, Hanson MS (1998) DbpA, but not OspA, is expressed by Borrelia burgdorferi during spirochetemia and is a target for protective antibodies. Infect Immun 66: 5379–5387

    CAS  PubMed  Google Scholar 

  • Crother TR, Champion CI, Wu X-Y, Blanco DR, Miller JN, Lovett MA (2003) Antigenic composition of Borrelia burgdorferi during infection of SCID mice. Infect Immun 71: 3419–3428

    Article  CAS  PubMed  Google Scholar 

  • Fikrig E, Telford SR, Barthold SW, Kantor FS, Spielman A, Flavell RA (1992) Elimination of Borrelia burgdorferi from vector ticks feeding on OspA-immunized mice. Proc Natl Acad Sci USA 89: 5418–5421

    Article  CAS  PubMed  Google Scholar 

  • Fingerle V, Hauser U, Liegl G, Petko B, Preac-Mursic V, Wilske B (1995) Expression of outer surface proteins A and C of Borrelia burgdorferi in Ixodes ricinus. J Clin Microbiol 33: 1867–1869

    CAS  PubMed  Google Scholar 

  • Hodzic E, Feng S, Freet KJ, Borjesson DL, Barthold SW (2002) Borrelia burgdorferi population kinetics and selected gene expression at the host-vector interface. Infect Immun 70: 3382–3388

    Article  CAS  PubMed  Google Scholar 

  • Leuba-Garcia S, Martinez R, Gern L (1998) Expression of outer surface proteins A and C of Borrelia afzelii in Ixodes ricinus ticks and in the skin of mice. Zentralbl Bakteriol 287: 475–484

    CAS  PubMed  Google Scholar 

  • Margolis N, Rosa PA (1993) Regulation of expression of major outer surface proteins in Borrelia burgdorferi. Infect Immun 61: 2207–2210

    CAS  PubMed  Google Scholar 

  • Montgomery RR, Malawista SE, Feen KJM, Bockenstedt LK (1996) Direct demonstration of antigenic substitution of Borrelia burgdorferi ex vivo: exploration of the paradox of the early immune response to outer surface proteins A and C in Lyme disease. J Exp Med 183: 261–269

    Article  CAS  PubMed  Google Scholar 

  • Philipp MT (1998) Studies on OspA: a source of new paradigms in Lyme disease research. Trends Microbiol 6: 44–47

    Article  CAS  PubMed  Google Scholar 

  • Piesman J, Zeidner NS, Schneider BS (2003) Dynamic changes in Borrelia burgdorferi populations in Ixodes scapularis (Acari: Ixodidae) during transmission: studies at the mRNA level. Vector Borne Zoonotic Dis 3: 125–132

    Article  PubMed  Google Scholar 

  • Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, deSilva AM, et al (2004) TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119: 457–468

    Article  CAS  PubMed  Google Scholar 

  • Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV (2004) Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199: 641–648

    Article  CAS  PubMed  Google Scholar 

  • Akins DR, Bourell KW, Caimano MJ, Norgard MV, Radolf JD (1998) A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest 101: 2240–2250

    CAS  PubMed  Google Scholar 

  • Dobrikova EY, Bugrysheva J, Cabello FC (2001) Two independent transcriptional units control the complex and simultaneous expression of the bmp paralogous chromosomal gene family in Borrelia burgdorferi. Mol Microbiol 39: 370–378

    Article  CAS  PubMed  Google Scholar 

  • Hodzic E, Feng S, Freet KJ, Barthold SW (2003) Borrelia burgdorferi population dynamics and prototype gene expression during infection of immunocompetent and immunodeficient mice. Infect Immun 71: 5042–5055

    Article  CAS  PubMed  Google Scholar 

  • Narasimhan S, Caimano MJ, Liang FT, Santiago F, Laskowski M, Philipp MT, et al (2003) Borrelia burgdorferi transcriptome in the central nervous system of non-human primates. Proc Natl Acad Sci USA 100: 15953–15958

    Article  CAS  PubMed  Google Scholar 

  • Rathinavelu S, de Silva AM (2001) Purification and characterization of Borrelia burgdorferi from feeding nymphal ticks (Ixodes scapularis). Infect Immun 69: 3536–3541

    Article  CAS  PubMed  Google Scholar 

  • Seshu J, Boylan JA, Gherardini FC, Skare JT (2004) Dissolved oxygen levels alter gene expression and antigen profiles in Borrelia burgdorferi. Infect Immun 72: 1580–1586

    Article  CAS  PubMed  Google Scholar 

  • Templeton TJ (2004) Borrelia outer membrane surface proteins and transmission through the tick. J Exp Med 199: 603–606

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Popova TG, Hagman KE, Wikel SK, Schoeler GB, Caimano MJ, et al (1999) Identification, characterization, and expression of three new members of the Borrelia burgdorferi Mlp (2.9) lipoprotein gene family. Infect Immun 67: 6008–6018

    CAS  PubMed  Google Scholar 

  • Yang X, Goldberg MS, Popova TG, Schoeler GB, Wikel SK, Hagman KE, et al (2000) Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol Microbiol 37: 1470–1479

    Article  CAS  PubMed  Google Scholar 

  • Yang XF, Hübner A, Popova TG, Hagman KE, Norgard MV (2003) Regulation of expression of the paralogous Mlp family in Borrelia burgdorferi. Infect Immun 71: 5012–5020

    Article  CAS  PubMed  Google Scholar 

  • Yang XF, Alani SM, Norgard MV (2003) The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci USA 100: 11001–11006

    Article  CAS  PubMed  Google Scholar 

  • Fingerle V, Liegl G, Munderloh U, Wilske B (1998) Expression of outer surface proteins A and C of Borrelia burgdorferi in Ixodes ricinus ticks removed from humans. Med Microbiol Immunol 187: 121–126

    Article  CAS  PubMed  Google Scholar 

  • Fingerle V, Laux H, Munderloh UG, Schulte-Spechtel U, Wilske B (2000) Differential expression of outer surface proteins A and C by individual Borrelia burgdorferi in different genospecies. Med Microbiol Immunol 189: 59–66

    Article  CAS  PubMed  Google Scholar 

  • Caimano MJ, Eggers CH, Gonzalez CA, Radolf JD (2005) Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp45-borne ospA and lp6.6 genes. J Bacteriol 187: 7845–7852

    Article  CAS  PubMed  Google Scholar 

  • Hübner A, Yang X, Nolen DM, Popova TG, Cabello PC, Norgard MV (2001) Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci USA 98: 12724–12729

    Article  PubMed  Google Scholar 

  • Yang XF, Lybecker MC, Pal U, Alani SM, Blevins J, Revel AT, et al (2005) Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. J Bacteriol 187: 4822–4829

    Article  CAS  PubMed  Google Scholar 

  • Carroll JA, Garon CF, Schwan TG (1999) Effects of environmental pH on membrane proteins in Borrelia burgdorferi. Infect Immun 67: 3181–3187

    CAS  PubMed  Google Scholar 

  • Carroll JA, Cordova RM, Garon CF (2000) Identification of eleven pH-regulated genes in Borrelia burgdorferi localized to linear plasmids. Infect Immun 68: 6677–6684

    Article  CAS  PubMed  Google Scholar 

  • Carroll JA, El-Hage N, Miller JC, Babb K, Stevenson B (2001) Borrelia burgdorferi RevA antigen is a surfaceexposed outer membrane protein whose expression is regulated in response to environmental temperature and pH. Infect Immun 69: 5286–5293

    Article  CAS  PubMed  Google Scholar 

  • Indest KJ, Ramamoorthy R, Sole M, Gilmore RD Jr, Johnson BJB, Philipp MT (1997) Cell-density-dependent expression of Borrelia burgdorferi lipoproteins in vitro. Infect Immun 65: 1165–1171

    CAS  PubMed  Google Scholar 

  • Ramamoorthy R, Philipp MT (1998) Differential expression of Borrelia burgdorferi proteins during growth in vitro. Infect Immun 66: 5119–5124

    CAS  PubMed  Google Scholar 

  • Ramamoorthy R, Scholl-Meeker D (2001) Borrelia burgdorferi proteins whose expression is similarly affected by culture temperature and pH. Infect Immun 69: 2739–2742

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Popova TG, Goldberg MS, Norgard MV (2001) Influence of cultivation media on genetic regulatory patterns in Borrelia burgdorferi. Infect Immun 69: 4159–4163

    Article  CAS  PubMed  Google Scholar 

  • Obonyo M, Munderloh UG, Fingerle V, Wilske B, Kurtti TJ (1999) Borrelia burgdorferi in tick cell culture modulates expression of outer surface proteins A and C in response to temperature. J Clin Microbiol 37: 2137–2141

    CAS  PubMed  Google Scholar 

  • Stevenson B, Zückert WR, Akins DR (2001) Repetition, conservation, and variation: the multiple cp32 plasmids of Borrelia species. In: Saier MH, García-Lara J (eds) The spirochetes: molecular and cellular biology. Horizon Press, Oxford, pp 87–100

    Google Scholar 

  • Stevenson B, Babb K, Bykowski T, Cooley AE, Woodman ME, von Lackum K, et al (2006) The Lyme disease spirochete Erp lipoprotein family: structure, function and regulation of expression. In: Cabello FC, Godfrey HP, Hulinska D (eds) Molecular biology of spirochetes. IOS Press, Amsterdam (in press)

  • Akins DR, Porcella SF, Popova TG, Shevchenko D, Baker SI, Li M, et al (1995) Evidence for in vivo but not in vitro expression of a Borrelia burgdorferi outer surface protein F (OspF) homologue. Mol Microbiol 18: 507–520

    Article  CAS  PubMed  Google Scholar 

  • Babb K, El-Hage N, Miller JC, Carroll JA, Stevenson B (2001) Distinct regulatory pathways control the synthesis of Borrelia burgdorferi infection-associated OspC and Erp surface proteins. Infect Immun 69: 4146–4153

    Article  CAS  PubMed  Google Scholar 

  • Babb K, McAlister JD, Miller JC, Stevenson B (2004) Molecular characterization of Borrelia burgdorferi erp promoter/operator elements. J Bacteriol 186: 2745–2756

    Article  CAS  PubMed  Google Scholar 

  • Caimano MJ, Eggers CH, Hazlett KRO, Radolf JD (2004) RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun 72: 6433–6445

    Article  CAS  PubMed  Google Scholar 

  • Das S, Barthold SW, Stocker Giles S, Montgomery RR, Telford SR, Fikrig E (1997) Temporal pattern of Borrelia burgdorferi p21 expression in ticks and the mammalian host. J Clin Invest 99: 987–995

    Article  CAS  PubMed  Google Scholar 

  • Eggers CH, Caimano MJ, Radolf JD (2004) Analysis of promoter elements involved in the transcription initiation of RpoS-dependent Borrelia burgdorferi genes. J Bacteriol 186: 7390–7402

    Article  CAS  PubMed  Google Scholar 

  • El-Hage N, Stevenson B (2002) Simultaneous coexpression of Borrelia burgdorferi Erp proteins occurs through a specific, erp locus-directed regulatory mechanism. J Bacteriol 184: 4536–4543

    Article  CAS  PubMed  Google Scholar 

  • Gilmore RD Jr, Mbow ML, Stevenson B (2001) Analysis of Borrelia burgdorferi gene expression during life cycle phases of the tick vector Ixodes scapularis. Microbes Infect 3: 799–808

    Article  CAS  PubMed  Google Scholar 

  • Hefty PS, Jolliff SE, Caimano MJ, Wikel SK, Radolf JD, Akins DR (2001) Regulation of OspE-related, OspF-related, and Elp lipoproteins of Borrelia burgdorferi strain 297 by mammalian host-specific signals. Infect Immun 69: 3618–3627

    Article  CAS  PubMed  Google Scholar 

  • Hefty PS, Jolliff SE, Caimano MJ, Wikel SK, Akins DR (2002) Changes in the temporal and spatial patterns of outer surface lipoprotein expression generate population heterogeneity and antigenic diversity in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 70: 3468–3478

    Article  CAS  PubMed  Google Scholar 

  • Kraiczy P, Skerka C, Brade V, Zipfel PF (2001) Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi. Infect Immun 69: 7800–7809

    Article  CAS  PubMed  Google Scholar 

  • McDowell JV, Sung SY, Price G, Marconi RT (2001) Demonstration of the genetic stability and temporal expression of select members of the Lyme disease spirochete OspF protein family during infection in mice. Infect Immun 69: 4831–4838

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Stevenson B (2004) Increased expression of Borrelia burgdorferi factor H-binding surface proteins during transmission from ticks to mice. Int J Med Microbiol 293 S37: 120–125

    CAS  PubMed  Google Scholar 

  • Miller JC, Narayan K, Stevenson B, Pachner AR (2005) Expression of Borrelia burgdorferi erp genes during infection of non-human primates. Microb Pathog 39: 27–33

    Article  CAS  PubMed  Google Scholar 

  • Stevenson B, Bono JL, Schwan TG, Rosa P (1998) Borrelia burgdorferi Erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria. Infect Immun 66: 2648–2654

    CAS  PubMed  Google Scholar 

  • Wallich R, Brenner C, Kramer MD, Simon MM (1995) Molecular cloning and immunological characterization of a novel linear-plasmid-encoded gene, pG, of Borrelia burgdorferi expressed only in vivo. Infect Immun 63: 3327–3335

    CAS  PubMed  Google Scholar 

  • Crother TR, Champion CI, Whitelegge JP, Aguilera R, Wu XY, Blanco DR, et al (2004) Temporal analysis of the antigenic composition of Borrelia burgdorferi during infection in rabbit skin. Infect Immun 72: 5063–5072

    Article  CAS  PubMed  Google Scholar 

  • Liang FT, Jacobs MB, Bowers LC, Philipp MT (2002) An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. J Exp Med 195: 415–422

    Article  CAS  PubMed  Google Scholar 

  • Liang FT, Yan J, Mbow ML, Sviat SL, Gilmore RD, Mamula M, et al (2004) Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect Immun 72: 5759–5767

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Stevenson B (2006) Borrelia burgdorferi erp genes are expressed at different levels within tissues of chronically infected mammalian hosts. Int J Med Microbiol 296 (51): 185–194

    Article  CAS  PubMed  Google Scholar 

  • Alitalo A, Meri T, Lankinen H, Seppälä I, Lahdenne P, Hefty PS, et al (2002) Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs. J Immunol 169: 3847–3853

    CAS  PubMed  Google Scholar 

  • Hellwage J, Meri T, Heikkilä T, Alitalo A, Panelius J, Lahdenne P, et al (2001) The complement regulatory factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276: 8427–8435

    Article  CAS  PubMed  Google Scholar 

  • Kraiczy P, Hellwage J, Skerka C, Kirschfink M, Brade V, Zipfel PF, et al (2003) Immune evasion of Borrelia burgdorferi: mapping of a complement inhibitor factor H-binding site of BbCRASP-3, a novel member of the Erp protein family. Eur J Immunol 33: 697–707

    Article  CAS  PubMed  Google Scholar 

  • Kraiczy P, Hartmann K, Hellwage J, Skerka C, Brade V, Zipfel PF, et al (2004) Immunological characterization of the complement regulator factor H-binding CRASP and Erp proteins of Borrelia burgdorferi. Int J Med Microbiol 293 (S37): 152–157

    CAS  PubMed  Google Scholar 

  • Metts MS, McDowell JV, Theisen M, Hansen PR, Marconi RT (2003) Analysis of the OspE determinants involved in binding of factor H and OspE-targeting antibodies elicited during Borrelia burgdorferi infection. Infect Immun 71: 3587–3596

    Article  CAS  PubMed  Google Scholar 

  • Stevenson B, El-Hage N, Hines MA, Miller JC, Babb K (2002) Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect Immun 70: 491–497

    Article  CAS  PubMed  Google Scholar 

  • Lawrie CH, Randolph SE, Nuttall PA (1999) Ixodes ticks: serum species sensitivity of anticomplement activity. Exp Parasitol 93: 207–214

    Article  CAS  PubMed  Google Scholar 

  • Rathinavelu S, Broadwater A, de Silva AM (2003) Does host complement kill Borrelia burgdorferi within ticks? Infect Immun 71: 822–829

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC (1987) Ixodes dammini: salivary anti-complement activity. Exp Parasitol 64: 347–353

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela JG, Charlab R, Mathers TN, Ribeiro JMC (2000) Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J Biol Chem 275: 18717–18723

    Article  CAS  PubMed  Google Scholar 

  • Brooks CS, Vuppala SR, Jett AM, Alitalo A, Meri S, Akins DR (2005) Complement regulator-acquiring surface protein 1 imparts resistance to human serum in Borrelia burgdorferi. J Immunol 175: 3299–3308

    CAS  PubMed  Google Scholar 

  • Cordes FS, Roversi P, Kraiczy P, Simon MM, Brade V, Jahraus O, et al (2005) A novel fold for factor H-binding protein BbCRASP-1 of Borrelia burgdorferi. Nature Struct Mol Biol 12: 276–277

    Article  CAS  Google Scholar 

  • Kraiczy P, Hellwage J, Skerka C, Becker H, Kirschfink M, Simon MM, et al (2004) Complement resistance of Borrelia burgdorferi correlates with the expression of BbCRASP-1, a novel linear plasmid-encoded surface protein that interacts with human factor H and FHL-1 and is unrelated to Erp proteins. J Biol Chem 279: 2421–2429

    Article  CAS  PubMed  Google Scholar 

  • McDowell JV, Harlin ME, Rogers EA, Marconi RT (2005) Putative coiled-coil structural elements of the BBA68 protein of Lyme disease spirochetes are required for formation of its factor H binding site. J Bacteriol 187: 1317–1323

    Article  CAS  PubMed  Google Scholar 

  • von Lackum K, Miller JC, Bykowski T, Riley SP, Woodman ME, Brade V, et al (2005) Borrelia burgdorferi regulates expression of complement regulator-acquiring surface protein 1 during the mammal-tick infection cycle. Infect Immun 73: 7398–7405

    Article  CAS  PubMed  Google Scholar 

  • Wallich R, Pattathu J, Kitiratschky V, Brenner C, Zipfel PF, Brade V, et al (2005) Identification and functional characterization of complement regulator-acquiring surface protein 1 of the Lyme disease spirochetes Borrelia afzelii and Borrelia garinii. Infect Immun 73: 2351–2359

    Article  CAS  PubMed  Google Scholar 

  • Wallich R, Zipfel PF, Skerka C, Kirschfink M, Simon MM, Stevenson B, et al (2006) Lyme disease spirochetes evade innate immunity by acquisition of complement regulators. In: Cabello FC, Godfrey HP, Hulinska D (eds) Molecular biology of spirochetes. IOS Press, Amsterdam (in press)

  • Lederer S, Brenner C, Stehle T, Gern L, Wallich R, Simon MM (2005) Quantitative analysis of Borrelia burgdorferi gene expression in naturally (tick) infected mouse strains. Med Microbiol Immunol 194: 81–90

    Article  CAS  PubMed  Google Scholar 

  • Wallich R, Jahraus O, Stehle T, Tran TTT, Brenner C, Hofmann H, et al (2003) Artificial-infection protocols allow immunodetection of novel Borrelia burgdorferi antigens suitable as vaccine candidates against Lyme disease. Eur J Immunol 33: 708–719

    Article  CAS  PubMed  Google Scholar 

  • Ledin KE, Zeidner NS, Ribeiro JM, Biggerstaff BJ, Dolan MC, Dietrich G, et al (2005) Borreliacidal activity of saliva of the tick Amblyomma americanum. Med Vet Entomol 19: 90–95

    Article  CAS  PubMed  Google Scholar 

  • Sauer JR, McSwain JL, Bowman AS, Essenberg RC (1995) Tick salivary gland physiology. Ann Rev Entomol 40: 245–267

    Article  CAS  Google Scholar 

  • Iyer R, Hardham JM, Wormser GP, Schwartz I, Norris SJ (2000) Conservation and heterogeneity of vlsE among human and tick isolates of Borrelia burgdorferi. Infect Immun 68: 1714–1718

    Article  CAS  PubMed  Google Scholar 

  • Kawabata H, Myouga F, Inagaki Y, Murai N, Watanabe H (1998) Genetic and immunological analyses of Vls (VMP-like sequences) of Borrelia burgdorferi. Microb Pathog 24: 155–166

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Botkin DJ, Norris SJ (2003) Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACA1. Mol Microbiol 47: 1407–1417

    Article  CAS  PubMed  Google Scholar 

  • Wang G, van Dam AP, Dankert J (2001) Analysis of a VMP-like sequence (vls) locus in Borrelia garinii and Vls homologues among four Borrelia burgdorferi sensu lato species. FEMS Microbiol Lett 199: 39–45

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-R, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89: 1–20

    Article  Google Scholar 

  • Zhang J-R, Norris SJ (1998) Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun 66: 3698–3704

    CAS  PubMed  Google Scholar 

  • Zhang J-R, Norris SJ (1998) Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect Immun 66: 3689–3697

    CAS  PubMed  Google Scholar 

  • Anguita J, Thomas V, Samanta S, Persinski R, Hernanz C, Barthold SW, et al (2001) Borrelia burgdorferi-induced inflammation facilitates spirochete adaptation and variable major protein-like sequence locus recombination. J Immunol 167: 3383–3390

    CAS  PubMed  Google Scholar 

  • Indest KJ, Howell JK, Jacobs MB, Scholl-Meeker D, Norris SJ, Philipp MT (2001) Analysis of Borrelia burgdorferi vlsE gene expression and recombination in the tick vector. Infect Immun 69: 7083–7090

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi J, Schneider B, Messer WB, Piesman J, deSilva AM (2003) Genetic variation at the vlsE locus of Borrelia burgdorferi within ticks and mice over the course of a single transmission cycle. J Bacteriol 185: 4432–4441

    Article  CAS  PubMed  Google Scholar 

  • Bykowski T, Babb K, von Lackum K, Riley SP, Norris SJ, Stevenson B (2006) Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein during the mammal-tick infectious cycle. J Bacteriol 188: 4879–4889

    Article  CAS  PubMed  Google Scholar 

  • Lawrenz MB, Hardham JM, Owens RT, Nowakowski J, Steere AC, Wormser GP, et al (1999) Human antibody responses to VlsE antigenic variation protein of Borrelia burgdorferi. J Clin Microbiol 37: 3997–4004

    CAS  PubMed  Google Scholar 

  • Liang FT, Alvarez AL, Gu Y, Nowling JM, Ramamoorthy R, Philipp MT (1999) An immunodominant conserved region within the variable domain of VlsE, the variable surface antigen of Borrelia burgdorferi. J Immunol 163: 5566–5573

    CAS  PubMed  Google Scholar 

  • de Silva AM, Fikrig E (1995) Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg 53: 397–404

    CAS  PubMed  Google Scholar 

  • Piesman J, Schneider BS (2002) Dynamic changes in Lyme disease spirochetes during transmission by nymphal ticks. Exp Appl Acarol 28: 141–145

    Article  PubMed  Google Scholar 

  • Piesman J, Schneider BS, Zeidner NS (2001) Use of quantitative PCR to measure density of Borrelia burgdorferi in the midgut and salivary glands of feeding tick vectors. J Clin Microbiol 39: 4145–4148

    Article  CAS  PubMed  Google Scholar 

  • Piesman J, Oliver JR, Sinsky RJ (1990) Growth kinetics of the Lyme disease spirochete (Borrelia burgdorferi) in vector ticks (Ixodes dammini). Am J Trop Med Hyg 42: 352–357

    CAS  PubMed  Google Scholar 

  • Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, et al (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs of an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35: 490–516

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, et al (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580–586

    Article  CAS  PubMed  Google Scholar 

  • Bugrysheva J, Dobrikova EY, Godfrey HP, Sartakova ML, Cabello FC (2002) Modulation of Borrelia burgdorferi stringent response and gene expression during extracellular growth with tick cells. Infect Immun 70: 3061–3067

    Article  CAS  PubMed  Google Scholar 

  • Bugrysheva J, Dobrikova EY, Sartakova ML, Caimano MJ, Daniels TJ, Radolf JD, et al (2003) Characterization of the stringent response and rel Bbu expression in Borrelia burgdorferi. J Bacteriol 185: 957–965

    Article  CAS  PubMed  Google Scholar 

  • Bugrysheva JV, Bruyskin AV, Godfrey HP, Cabello FC (2005) Borrelia burgdorferi rel is responsible for generation of guanosine-3′-diphosphate-5′-triphosphate and growth control. Infect Immun 73: 4972–4981

    Article  CAS  PubMed  Google Scholar 

  • Concepcion MB, Nelson DR (2003) Expression of spoT in Borrelia burgdorferi during serum starvation. J Bacteriol 185: 444–452

    Article  CAS  PubMed  Google Scholar 

  • Babb K, von Lackum K, Wattier RL, Riley SP, Stevenson B (2005) Synthesis of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 187: 3079–3087

    Article  CAS  PubMed  Google Scholar 

  • Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187: 1792–1798

    Article  CAS  PubMed  Google Scholar 

  • Stevenson B, Babb K (2002) LuxS-mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 70: 4099–4105

    Article  CAS  PubMed  Google Scholar 

  • von Lackum K, Babb K, Riley SP, Wattier RL, Bykowski T, Stevenson B (2006) Functionality of Borrelia burgdorferi LuxS: the Lyme disease spirochete produces and responds to the pheromone autoinducer-2, and lacks a complete activated-methyl cycle. Int J Med Microbiol 296 (51): 92–102

    Article  CAS  PubMed  Google Scholar 

  • Boylan JA, Posey JE, Gherardini FC (2003) Borrelia oxidative stress response regulator, BosR: a distinct Zndependent transcriptional activator. Proc Natl Acad Sci USA 100: 11684–11689

    Article  CAS  PubMed  Google Scholar 

  • Katona LI, Tokarz R, Kuhlow CJ, Benach J, Benach JL (2004) The Fur homologue in Borrelia burgdorferi. J Bacteriol 186: 6443–6456

    Article  CAS  PubMed  Google Scholar 

  • Babb K, Bykowski T, Riley SP, Miller MC, DeMoll E, Stevenson B (2006) Borrelia burgdorferi EbfC, a novel, chromosomally-encoded protein, binds specific DNA sequences adjacent to erp loci on the spirochete's resident cp32 prophages. J Bacteriol 188: 4331–4339

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Stevenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, B., von Lackum, K., Riley, S. et al. Evolving models of Lyme disease spirochete gene regulation. Wien Klin Wochenschr 118, 643–652 (2006). https://doi.org/10.1007/s00508-006-0690-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-006-0690-2

Keywords

Navigation