Skip to main content

Advertisement

Log in

An individual-level network model for a hypothetical outbreak of Japanese encephalitis in the USA

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Japanese encephalitis (JE) is a vector-borne disease transmitted by mosquitoes and maintained in birds and pigs. To examine the possible epidemiology of JE in the United States, we use an individual-level network model that explicitly considers the feral pig population and implicitly considers mosquitoes and birds in specific areas of Florida, North Carolina, and South Carolina. To model the virus transmission among feral pigs within a small geographic area (<60 sq mi areas), two network topologies are considered: Fully connected and Erdos–Renyi networks. Long-distance connections (interstate) are created with limited probability and based on fall and spring bird migration patterns. Patterns of simulated outbreaks support the use of the Erdos–Renyi network because maximum incidence occurs during the fall migration period which is similar to the peak incidence of the closely related West Nile virus, another virus in the Japanese encephalitis group (Flaviviridae) that is transmitted by both birds and mosquitoes. Simulation analysis suggested two important mitigation strategies: for low mosquito vectorial capacity, insecticidal spraying of infected areas reduces transmission and limits the outbreak to a single geographic area. Alternatively, in high mosquito vectorial capacity areas, birds rather than mosquitoes need to be removed/controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal M, Verma V (2012) The impact of media on the spreading and control of Japanese encephalitis. Int J Math Sci Comput 2(2):23–31

    Google Scholar 

  • Biology (2015) What is the difference between a mechanistic and a statistical model? http://biology.stackexchange.com/questions/34231/what-is-the-difference-between-a-mechanistic-and-a-statistical-predictive-model

  • Britton T, Giardina F (2016) Introduction to statistical inference for infectious diseases. J Soc Fr Stat 157(1):53–70

    Google Scholar 

  • Brodland GW (2015) How computational models can help unlock biological systems. Seminars in cell and developmental biology, vol 73., p 67

    Google Scholar 

  • Buescher EL, Scherer WF (1959) Ecologic studies of Japanese encephalitis virus in Japan. IX. Epidemiologic correlations and conclusions. Am J Trop Med Hyg 8:719–722

    CAS  Google Scholar 

  • Burke DS, Tingpalapong M, Ward GS, Andre R, Leake CJ (1985) Intense transmission of Japanese encephalitis virus to pigs in a region free of epidemic encephalitis. Southeast Asian. J Trop Med Public Health 16:199–206

    CAS  Google Scholar 

  • Ciota AT, Drummond CL, Ruby MA, Drobnack J, Ebel GD, Kramer LD (2012) Dispersal of Culex mosquitoes (Diptera: Culicidae) from a wastewater treatment facility. J Med Entomol 49(1):35–42

    Article  Google Scholar 

  • Coker RJ, Hunter BM, Rudge JW, Liverani M, Hanvoravongchai P (2011) Emerging infectious diseases in Southeast Asia: regional challenges to control. Lancet 377(9765):599–609

    Article  Google Scholar 

  • Desouza K, Yuan L (2013) Towards evidence-driven policy design: complex adaptive systems and computational modeling. Annu Rev Policy Des 1:1–19

    Google Scholar 

  • eBird (2015) Cornell lab of ornithology. http://ebird.org/ebird/places?yr=allandm. Accessed 23 Mar 2016

  • Erdos P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hungar Acad Sci 5:17–61

    Google Scholar 

  • Erlanger TE, Weiss S, Keiser J, Utzinger J, Wiedenmayer K (2009) Past, present, and future of Japanese encephalitis. Emerg Infect Dis 15(1):1–7

    Article  Google Scholar 

  • Evans MR, Bithell M, Cornell SJ, Dall SRX, Díaz S, Emmott S, Ernande B, Grimm V, Hodgson DJ, Lewis SL, Mace GM, Morecroft M, Moustakas A, Murphy E, Newbold T, Norris KJ, Petchey O, Smith M, Travis JMJ, Benton TG (2013) Predictive systems ecology. Proc R Soc B 280:20131452

    Article  Google Scholar 

  • Evans MR, Benton TG, Grimm V, Lessells CM, O’Malley MA, Moustakas A, Weisberg M (2014) Data availability and model complexity, generality, and utility: a reply to Lonergan. Trends Ecol Evol 29:302–303

    Article  Google Scholar 

  • Garrett-Jones C (1964) The human blood index of malaria vectors in relation to epidemiological assessment. Bull World Health Organ 30(2):241

    CAS  Google Scholar 

  • Garrett-Jones C, Shidrawi GR (1969) Malaria vectorial capacity of a population of Anopheles gambiae: an exercise in epidemiological entomology. Bull World Health Organ 40(4):531

    CAS  Google Scholar 

  • Gunasekaran K, Sahu SS, Jambulingam P (2014) Estimation of vectorial capacity of Anopheles minimus Theobald and An. fluviatilis James (Diptera: Culicidae) in a malaria endemic area of Odisha State, India. Indian J Med Res 140(5):653

    CAS  Google Scholar 

  • Handel A, Longini IM, Antia R (2007) What is the best control strategy for multiple infectious disease outbreaks? Proc R Soc Lond B 274(1611):833–837

    Article  Google Scholar 

  • Hanna JN, Ritchie SA, Phillips DA, Shield J, Bailey MC, Mackenzie JS, Poidinger M, McCall BJ, Mills PJ (1995) An outbreak of Japanese encephalitis in the Torres Strait, Australia. Med J Aust 165(5):256–260

    Google Scholar 

  • Honeyman MS (2005) Extensive bedded indoor and outdoor pig production systems in USA: current trends and effects on animal care and product quality. Livest Prod Sci 94(1):15–24

    Article  Google Scholar 

  • Huang YJ, Harbin JN, Hettenbach SM, Maki E, Cohnstaedt LW, Barrett AD, Higgs S, Vanlandingham DL (2015) Susceptibility of a North American Culex quinquefasciatus to Japanese encephalitis virus. Vector Borne Zoonotic Dis 15(11):709–711

    Article  Google Scholar 

  • Jourdain E, Gauthier-Clerc M, Bicout DJ, Sabatier P (2007) Bird migration routes and risk for pathogen dispersion into western Mediterranean wetlands. Emerg Infect Dis 13(3):365

    Article  Google Scholar 

  • Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9(3):311–322

    Article  Google Scholar 

  • Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA (1999) Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286(5448):2333–2337

    Article  CAS  Google Scholar 

  • Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10:S98–S109

    Article  CAS  Google Scholar 

  • Manore C, Hyman M (2016) Mathematical models for fighting Zika virus. Siam News, Philadelphia

    Google Scholar 

  • Moustakas A, Evans MR (2015) Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB). Stoch Environ Res Risk Assess 29(3):623–635

    Article  Google Scholar 

  • Mukhopadhyay BB, Tapaswi PK (1994) An SIRS epidemic model of Japanese encephalitis. Int Journal of Math Math Sci 17(2):347–355

    Article  Google Scholar 

  • Naresh R, Pandey S (2009) Modeling and analysis of the spread of Japanese encephalitis with environmental effects. Appl Appl Math 4(1):155–175

    Google Scholar 

  • Newton I (2010) The migration ecology of birds. Academic Press, Cambridge

    Google Scholar 

  • Owen J, Moore F, Panella N, Edwards E, Bru R, Hughes M, Komar N (2006) Migrating birds as dispersal vehicles for West Nile virus. Eco Health 3(2):79–85

    Google Scholar 

  • Peterson AT, Vieglais DA, Andreasen JK (2003) Migratory birds modeled as critical transport agents for West Nile virus in North America. Vector-Borne Zoonotic Dis 3(1):27–37

    Article  Google Scholar 

  • Rappole J, Derrickson SR, Hubálek Z (2000) Migratory birds and spread of West Nile virus in the Western Hemisphere. Emerg Infect Dis 6(4):319–328

    Article  CAS  Google Scholar 

  • Rappole JH, Compton BW, Leimgruber P, Robertson J, King DI, Renner SC (2006a) Modeling movement of West Nile virus in the Western hemisphere. Vector Borne Zoonotic Dis 6(2):128–139

    Article  Google Scholar 

  • Rappole JH, Derrickson SR, Hubálek Z (2006b) Migratory birds and spread of West Nile virus in the Western Hemisphere. Emerg Infect Dis 6(4):319

    Article  Google Scholar 

  • Reed KD, Meece JK, Henkel JS, Shukla SK (2003) Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clin Med Res 1(1):5–12

    Article  Google Scholar 

  • Reiner RC, Perkins TA, Barker CM, Niu T, Chaves LF, Ellis AM, George DB, Le Menach A, Pulliam JR, Bisanzio D, Buckee C (2013) A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J R Soc Interface 10(81):20120921

    Article  Google Scholar 

  • Ricklin ME, García-Nicolás O, Brechbühl D, Python S, Zumkehr B, Nougairede A, Charrel RN, Posthaus H, Oevermann A, Summerfield A (2016) Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nat commun 23:7

    Google Scholar 

  • Sahneh FD, Scoglio C, Van Mieghem P (2013) Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Trans Netw 21(5):1609–1620

    Article  Google Scholar 

  • Sahneh FD, Vajdi A, Shakeri H, Fan F., Scogilo C (2016) GEMFsim: a stochastic simulator for the generalized epidemic modeling framework. https://arxiv.org/1528946. Accessed 7 Apr 2016

  • Schuyler PT, Garcelon DK, Escover S (2002) Eradication of feral pigs (Sus scrofa) on Santa Catalina island, California, USA. Turning the tide: the eradication of invasive species. IUCN SSC Invasive Species Specialist Group, Gland, p 274

    Google Scholar 

  • SCWDS (2015) Feral swine distribution map. http://swine.vet.uga.edu/nfsms/information/map2015.htm. Accessed 26 Mar 2016

  • SE Corporation wildlife disease study (1988) Feral/wild swine populations. http://vet.uga.edu/population_health_files/scwds-150swine88-2012.jpg. Accessed 26 Mar 2016

  • SEWISC (2007) Southeastern Wisconsin invasive species consortium Inc. http://sewisc.org/invasives/invasive-animals/59-feral-pig. Accessed 26 Mar 2016

  • Solomon T (2006) Control of Japanese encephalitis—within our grasp? N Engl J Med 355:869–871. doi:10.1056/NEJMp058263

    Article  CAS  Google Scholar 

  • Solomon T, Ni H, Beasley DW, Ekkelenkamp M, Cardosa MJ, Barrett AD (2003) Origin and evolution of Japanese encephalitis virus in Southeast Asia. J Virol 77(5):3091–3098

    Article  CAS  Google Scholar 

  • Tapaswi PK, Ghosh AK, Mukhopadhyay BB (1995) Transmission of Japanese encephalitis in a 3-population model. Ecol Model 83(3):295–309

    Article  Google Scholar 

  • Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6(31):187–202

    Article  Google Scholar 

  • United Nations (2005) The United Nations urbanization prospects: the 2005 revision. POP/DB/WUP/Rev.2005/1/F1. United Nations, New York

  • Unkel S, Farrington C, Garthwaite PH, Robertson C, Andrews N (2012) Statistical methods for the prospective detection of infectious disease outbreaks: a review. J R Stat Soc 175(1):49–82

    Article  Google Scholar 

  • USGS (2015) West Nile virus human provisional 2015 data. http://diseasemaps.usgs.gov/mapviewer/. Accessed 26 Mar 2016

  • Vythilingam I, Chiang GL, Lee HL, Singh K (1992) Special report on bionomics of important mosquito vectors in Malaysia. Southeast Asian J Trop Med Public Health 23(4):581–602

    Google Scholar 

  • Weaver SC, Barrett AD (2004) Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol 2(10):789–801

    Article  CAS  Google Scholar 

  • Williams DT, Daniels PW, Lunt RA, Wang LF, Newberry KM, Mackenzie JS (2001) Experimental infections of pigs with Japanese encephalitis virus and closely related Australian flaviviruses. Am J Trop Med Hyg 65(4):379–387

    CAS  Google Scholar 

  • World Health Organization (2013) World health report: Research for universal health coverage. http://www.who.int/whr/en. Accessed 26 Mar 2016

  • Yu HL, Yang SJ, Yen HJ, Christakos G (2011) A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stoch Env Res Risk Assess 25(4):485–494

    Article  Google Scholar 

Download references

Funding

This material is based upon work supported by the United States Department of Agriculture Research Project #427647, and by the National Science Foundation under Grant No. CIF-1423411. The views and conclusions contained in this publication are those of the authors and should not be interpreted as necessarily representing the official policies, either explicit or implicit, of the United States Department of Agriculture. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahbubul H. Riad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riad, M.H., Scoglio, C., McVey, D.S. et al. An individual-level network model for a hypothetical outbreak of Japanese encephalitis in the USA. Stoch Environ Res Risk Assess 31, 353–367 (2017). https://doi.org/10.1007/s00477-016-1353-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1353-0

Keywords

Navigation