Skip to main content

Advertisement

Log in

Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The conventional approach to the frequency analysis of extreme precipitation is complicated by non-stationarity resulting from climate variability and change. This study utilized a non-stationary frequency analysis to better understand the time-varying behavior of short-duration (1-, 6-, 12-, and 24-h) precipitation extremes at 65 weather stations scattered across South Korea. Trends in precipitation extremes were diagnosed with respect to both annual maximum precipitation (AMP) and peaks-over-threshold (POT) extremes. Non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with model parameters made a linear function of time were applied to AMP and POT respectively. Trends detected using the Mann–Kendall test revealed that the stations showing an increasing trend in AMP extremes were concentrated in the mountainous areas (the northeast and southwest regions) of South Korea. Trend tests on POT extremes provided fairly different results, with a significantly reduced number of stations showing an increasing trend and with some stations showing a decreasing trend. For most of stations showing a statistically significant trend, non-stationary GEV and GPD models significantly outperformed their stationary counterparts, particularly for precipitation extremes with shorter durations. Due to a significant-increasing trend in the POT frequency found at a considerable number of stations (about 10 stations for each rainfall duration), the performance of modeling POT extremes was further improved with a non-homogeneous Poisson model. The large differences in design storm estimates between stationary and non-stationary models (design storm estimates from stationary models were significantly lower than the estimates of non-stationary models) demonstrated the challenges in relying on the stationary assumption when planning the design and management of water facilities. This study also highlighted the need of caution when quantifying design storms from POT and AMP extremes by showing a large discrepancy between the estimates from those two approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

    Google Scholar 

  • Awan AJ, Bae D-H, Kim K-J (2015) Identification and trend analysis of nonhomogeneous rainfall zones over the East Asia monsoon region. Int J Climatol 35:1422–1433

    Article  Google Scholar 

  • Bae D-H, Jung IW, Chang H (2008) Long-term trend of precipitation and runoff in Korean river basins. Hydrol Process 22:2644–2656

    Article  Google Scholar 

  • Begueria S, Angulo-Martinez M, Vicente-Serrano M, Lopez-Moreno JI, El-Kenawy A (2011) Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: a case study in northeast Spain from 1930 to 2006. Int J Climatol 31:2102–2114

    Article  Google Scholar 

  • Bengtsson A, Nilsson C (2007) Extreme value modelling of storm damage in Swedish forests. Nat Hazards Earth Syst Sci 7:515–521

    Article  Google Scholar 

  • Burn DH, Hag Elnur MA (2002) Detection of hydrologic trend and variability. J Hydrol 255:107–122

    Article  Google Scholar 

  • Chang H, Kwon WT (2007) Spatial variations of summer precipitation trends in South Korea, 1973–2005. Environ Res Lett 2:045012. doi:10.1088/1748-9326/2/4/045012

    Article  Google Scholar 

  • Coles SG (2001) An introduction to statistical modeling of extreme values. Springer, London

    Book  Google Scholar 

  • Cox DR, Isham VS, Northrop PJ (2002) Floods: some probability and statistical approaches. Philos Trans R Soc A 360:1389–1408

    Article  CAS  Google Scholar 

  • Cunderlik JM, Burn DH (2003) Non-stationary pooled flood frequency analysis. J Hydrol 276:210–223

    Article  Google Scholar 

  • Delgado JM, Merz B, Apel H (2014) Projecting flood hazard under climate change: an alternative approach to model chains. Nat Hazards Earth Syst Sci 14:1579–1589

    Article  Google Scholar 

  • Douglas EM, Vogel RM, Kroll CN (2000) Trends in floods in the United States: impact of spatial correlation. J Hydrol 240:90–105

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  Google Scholar 

  • El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobee B (2007) Generalized maximum likelihood estimators for the nonstationary GEV model. Water Resour Res 43:W03410. doi:10.1029/2005WR004545

    Article  Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • IPCC (2002) Report: workshop report on changes in extreme weather and climate events, Beijing, 11–13 June 2002

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jain S, Lall U (2001) Floods in a changing climate: does the past represent the future? Water Resour Res 37:3193–3205

    Article  Google Scholar 

  • Jin Q, Yang X-Q, Sun X-G, Fang J-B (2013) East Asian summer monsoon circulation structure controlled by feedback of condensational heating. Clim Dyn 41:1885–1897

    Article  Google Scholar 

  • Jung H-S, Choi Y, Oh J-H, Lim G-H (2002) Recent trends in temperature and precipitation over South Korea. Int J Climatol 22:1327–1337

    Article  Google Scholar 

  • Jung IW, Bae D, Kim G (2011) Recent trends of mean and extreme precipitation in Korea. Int J Climatol 31(3):359–370

    Article  Google Scholar 

  • Katz RW, Parlange MB, Noveau P (2002) Statistics of extremes: modeling ecological disturbances. Adv Water Resour 25:1287–1304

    Article  Google Scholar 

  • Kendall M (1975) Rank correlation methods. Charles Griffin & Company, London

    Google Scholar 

  • Khaliq MN, Ouarda TBMJ, Ondo J-C, Gachon P, Bobee B (2006) Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review. J Hydrol 329(3–4):534–552

    Article  Google Scholar 

  • Kharin VV, Zwiers W (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173

    Article  Google Scholar 

  • Kim J-H, Ho C-H, Lee M-H, Jeong J-H, Chen D (2006) Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s. Geophys Res Lett 33:L18706. doi:10.1029/2006GL027430

    Article  Google Scholar 

  • Kim C, Suh MS, Hong KO (2009) Bayesian change-point analysis of the annual maximum of daily and subdaily precipitation over South Korea. J Clim 22:6741–6757

    Article  Google Scholar 

  • Kim K-Y, Roh J-W, Lee D-K, Jhun J-G (2010) Physical mechanisms of the seasonal, subseasonal, and high-frequency variability in the seasonal cycle of summer precipitation in Korea. J Geophys Res 115:D14110. doi:10.1029/2009JD013561

    Article  Google Scholar 

  • Kim Y, Kang B, Adams JM (2012) Opposite trends in summer precipitation in South and North Korea. Int J Climatol 32(15):2311–2319

    Article  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe. J Clim 1946–99:3665–3680

    Article  Google Scholar 

  • Kunkel K, Easterling D, Redmond K, Hubbard K (2003) Temporal variations of extreme precipitation events in the United States: 1985–2000. Geopyhs Res Lett 30(17):GL018052. doi:10.1029/2003GL018052

    Google Scholar 

  • Lang M, Ouarda TB, Bobee B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225:103–117

    Article  Google Scholar 

  • Laurent C, Parey S (2007) Estimation of 100-year-return-period temperature in France in a non-stationary climate: results from observations and IPCC scenarios. Glob Planet Chang 57:177–188

    Article  Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzen H (1983) Extremes and related properties of random sequences and series. Springer, New York

    Book  Google Scholar 

  • Lee SS, Vinavachandran PN, Ha KJ, Jhun JG (2010) Shift of peak in summer monsoon rainfall over Korea and its association with El Nino-Southern Oscillation. J Geophys Res 115:D02111. doi:10.1029/2009JD011717

    Google Scholar 

  • Li Y, Cai W, Campbell EP (2005) Statistical modeling of extreme rainfall in Southwest Western Austrailia. J Clim 18:852–863

    Article  Google Scholar 

  • Mathworks (2015) MATLAB and optimization toolbox release 2015a. The MathWorks Inc., Natick

    Google Scholar 

  • McNeil AJ (1997) Estimating the tails of loss severity distributions using extreme value theory. ASTIN Bull 27:117–137

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319(5863):573–574

    Article  CAS  Google Scholar 

  • Nadarajah S, Choi D (2007) Maximum daily rainfall in South Korea. J Earth Syst Sci 116:311–320

    Article  Google Scholar 

  • Nogaj M, Yiou P, Parey S, Malek F, Naveau P (2006) Amplitude and frequency of temperature extremes over the North Atlantic region. Geophys Res Lett 33:L10801

    Article  Google Scholar 

  • Nogaj M, Parey S, Dacunha-Castelle D (2007) Non-stationary extreme models and a climatic application. Nonlinear Process Geophys 14:305–316

    Article  Google Scholar 

  • Parey S, Malek F, Laurent C (2007) Trends and climate evolution: statistical approach for very high temperatures in France. Clim Chang 81:331–352

    Article  Google Scholar 

  • Park SK, Lee E (2007) Synoptic features of orographically enhanced heavy rainfall on the east coast of Korea associated with Typhoon Rusa (2002). Geophys Res Lett 34:L02803. doi:10.1029/2006GL028592

    Google Scholar 

  • Park J-S, Kang H-S, Lee Y-S, Kim M-K (2011) Changes in the extreme daily rainfall in South Korea. J Int Climatol 31:2290–2299

    Article  Google Scholar 

  • Peterson TC, Taylor MA, Demeritte R, Duncombe DL, Burton S, Thompson F, Porter A, Mercedes M, Villegas E, Fils RS, Klein Tank A, Martis A, Warner R, Joyette A, Mills W, Alexander L, Gleason B (2002) Recent changes in climate extremes in the Caribbean region. J Geophys Res 107:4601. doi:10.1029/2002JD002251

    Article  Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135

    Article  Google Scholar 

  • Ramesh NI, Davison AC (2002) Local models for exploratory analysis of hydrological extremes. J Hydrol 256:106–119

    Article  Google Scholar 

  • Reis DS, Stedinger JR (2005) Bayesian MCMC flood frequency analysis with historical information. J Hydrol 313:97–116

    Article  Google Scholar 

  • Roh J-W, Kim K-Y, Jhun J-G (2012) Decadal changes in the physical mechanisms of the seasonal cycle of summertime precipitation variability in Korea. J Geophys Res 117:D07115. doi:10.1029/2011JD017268

    Google Scholar 

  • Roth M, Buishand TA, Jongbloed G, Klein-Tank AMG, van Zanten JH (2012) A regional peaks-over-threshold model in a nonstationary climate. Water Resour Res 48:W11533. doi:10.1029/2012WR012214

    Article  Google Scholar 

  • Sankarasubramanian A, Lall U (2003) Flood quantiles in a changing climate: seasonal forecasts and causal relations. Water Resour Res 39:1134. doi:10.1029/2002WR001593

    Article  Google Scholar 

  • Seo L, Kim T-W, Choi M, Kwon H-H (2012) Constructing rainfall depth-frequency curves considering a linear trend in rainfall observations. Stoch Environ Res Risk Assess 26:419–427

    Article  Google Scholar 

  • Seo K-H, Ok J, Son J-H (2013) Assessing future changes in the East Asian Summer Monsoon uisng CMIP5 coupled models. J Clim 26:7662–7675

    Article  Google Scholar 

  • Seo YA, Lee Y, Park J-S, Kim M-K, Cho C, Baek H-J (2014) Assessing changes in observed and future projected precipitation extremes in South Korea. Int J Climatol. doi:10.1002/joc.4039

    Google Scholar 

  • Steinshcneider S, Lall U (2015) A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports. Water Resour Res 51:1472–1492. doi:10.1002/2014WR016664

    Article  Google Scholar 

  • Strupczewski WG, Singh VP, Feluch W (2001a) Non-stationary approach to at-site flood frequency modeling I. Maximum likelihood estimation. J Hydrol 248:123–142

    Article  Google Scholar 

  • Strupczewski WG, Singh VP, Mitosek HT (2001b) Non-stationary approach to at-site flood frequency modeling. III. Flood analysis of Polish rivers. J Hydrol 248:152–167

    Article  Google Scholar 

  • Sugahara SR, da Rocha P, Silveria R (2009) Non-stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil. Int J Climatol 29(9):1339–1349

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Villarini G, Smith JA, Napolitano F (2010) Nonstationary modeling of a long record of rainfall and temperature over Rome. Adv Water Resour 33:1256–1267

    Article  Google Scholar 

  • Villarini G, Smith JA, Serinaldi F, Ntelekos AA, Schwarz U (2012) Analyses of extreme flooding in Austria over the period 1951–2006. Int J Climatol 32:1178–1192

    Article  Google Scholar 

  • Wang XL, Zwiers FW, Swail V (2004) North Atlantic Ocean wave climate scenarios for the twenty-first century. J Clim 17:2368–2383

    Article  Google Scholar 

  • Wi S, Dominguez F, Durcik M, Valdes J, Diaz HF, Castro CL (2012) Climate change projections of snowfall in the Colorado River Basin using dynamical downscaling. Water Resour Res 48:W05504. doi:10.1029/2011WR010674

    Article  Google Scholar 

  • Yue S, Pilon P (2004) A comparison of the power of the t test, Mann–Kendall and bootstrap tests for trend detection. Hydgol Sci J 49(1):21–37

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B (2003) Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol Sci J 48(1):51–63

    Article  Google Scholar 

  • Zhang X, Zwiers FW, Li G (2004) Monte Carlo experiments on the detection of trends in extreme values. J Clim 17:1945–1952

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Woong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wi, S., Valdés, J.B., Steinschneider, S. et al. Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima. Stoch Environ Res Risk Assess 30, 583–606 (2016). https://doi.org/10.1007/s00477-015-1180-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1180-8

Keywords

Navigation