Skip to main content
Log in

Assimilating transient groundwater flow data via a localized ensemble Kalman filter to calibrate a heterogeneous conductivity field

  • Original paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A localized ensemble Kalman filter (EnKF) method is developed to assimilate transient flow data to calibrate a heterogeneous conductivity field. To update conductivity value at a point in a study domain, instead of assimilating all the measurements in the study domain, only limited measurement data in an area around the point are used for the conductivity updating in the localized EnKF method. The localized EnKF is proposed to solve the problems of the filter divergence usually existing in a data assimilation method without localization. The developed method is applied, in a synthetical two dimensional case, to calibrate a heterogeneous conductivity field by assimilating transient hydraulic head data. The simulations by the data assimilation with and without localized EnKF are compared. The study results indicate that the hydraulic conductivity field can be updated efficiently by the localized EnKF, while it cannot be by the EnKF. The covariance inflation and localization are found to solve the problem of the filter divergence efficiently. In comparison with the EnKF method without localization, the localized EnKF method needs smaller ensemble size to achieve stabilized results. The simulation results by the localized EnKF method are much more sensitive to conductivity correlation length than to the localization radius. The developed localized EnKF method provides an approach to improve EnKF method in conductivity calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adrian S, Constantinescu EM, Carmichael GR, Chai TF, Seinfeld JH, Daescu D (2007) Localized ensemble Kalman dynamic data assimilation for atmospheric chemistry. Lect Notes Comput Sci 4487:1018–1025. doi:10.1007/978-3-540-72584-8_134

    Article  Google Scholar 

  • Anderson JL (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129:2884–2903

    Article  Google Scholar 

  • Anderson JL (2007) An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus 59(2):210–224

    Article  Google Scholar 

  • Anderson JL, Anderson SL (1999) A Monte-Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon Weather Rev 127(12):2741–2758

    Article  Google Scholar 

  • Burgers G, van Leeuwen PJ, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126:1719–1724

    Article  Google Scholar 

  • Campbell WF, Bishop CH, Hodyss D (2010) Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon Weather Rev 138:282–290

    Article  Google Scholar 

  • Chang HB, Chen Y, Zhang DX (2010) Data assimilation of coupled fluid flow and geomechanics via ensemble Kalman filter. SPE 118963 115:D19205

  • Chen Y, Oliver DS (2009) Application of ensemble-based closed-loop optimization on Brugge field, SPE-118926. In: Proceedings of the SPE Reservoir Simulation Symposium. The Woodlands, Texas, 2–4 February 2009

  • Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via Ensemble Kalman Filter. Adv Water Resour 29:1107–1122

    Article  Google Scholar 

  • Christakos G (2005) Methodological developments in geophysical assimilation modeling. Rev Geophys 43:1–10

    Google Scholar 

  • Clayton VD, Andre GJ (1997) GSLIB—Geostatistical software library and user’s guide. Oxford University Press, Oxford

  • Cohn SE (1997) An introduction to estimation theory. J Meteor Soc Japan 75(1B):257–228

    Google Scholar 

  • Constantinescu EM, Sandu A, Chai TF, Carmichael GR (2006) Ensemble-based chemical data assimilation П: covariance localization. Q J R Meteorol Soc 128:1–18

    Google Scholar 

  • Devegowda D, Arroyo-Negrete E, Datta-Gupta A, Douma SG (2007) Efficient and robust reservoir model updating using ensemble Kalman filter with sensitivity-based covariance localization, SPE-106144. In: SPE Reservoir Simulation Symposium. SPE, Houston

  • Devegowda D, Arroyo-Negrete E, Datta-Gupta A (2010) Flow relevant covariance localization during dynamic data assimilation using EnKF. Adv Water Resour 33:129–145

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10.143–10.162

    Google Scholar 

  • Evensen G (2009) The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Syst Mag 29:83–104

    Google Scholar 

  • Franssen HJH, Kinzelbach W (2008) Ensemble Kalman filtering versus sequential self-calibration for inverse modeling of dynamic groundwater flow systems. J Hydrol. doi:10.1016/j.jhydrol.2008.11.033

  • Furrer R, Bengtsson T (2007) Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J Multivar Anal 98:227–255

    Article  Google Scholar 

  • Hamill TM (2007) Review of “covariance localization” in ensemble filters. NOAA Earth System Research Lab, Boulder

  • Hamill TM, Synder C (2000) A hybrid ensemble Kalman filter—3D variational analysis scheme. Mon Weather Rev 128:2905–2919

    Article  Google Scholar 

  • Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129:2776–2790

    Article  Google Scholar 

  • Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129:123–137

    Article  Google Scholar 

  • Huang C, Bill XH, Li X, Ye M (2009) Using data assimilation method to calibrate a heterogeneous conductivity field and improve solute transport prediction with an unknown contamination source. Stoch Environ Res Risk Assess 23:1155–1167

    Google Scholar 

  • Kalnay E, Li H, Miyoshi T, Yang SC, Ballabrera-Poy J (2007) 4-D-Var or ensemble Kalman filter? Tellus A 59(5):758–773

    Article  Google Scholar 

  • Kepert JD (2009) Covariance localization and balance in an ensemble Kalman Filter. Quart J Royal Meteorol Soc 135:1157–1176

    Article  Google Scholar 

  • LeDimet FX, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations—theoretical aspects. Tellus Series A 38(2):97–110

    Article  Google Scholar 

  • Navon IM, Zou X, Derber J, Sela J (1992) Variational data assimilation with an adiabatic version of the NMC spectral model. Mon Weather Rev 120(7):1433–1446

    Article  Google Scholar 

  • Oliver DS, Reynolds AC, Liu N (2008) Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press, Cambridge

  • Parrish DF, Derber JC (1992) The national-meteorological-centers spectral statistical-interpolation analysis system. Mon Weather Rev 120(8):1747–1763

    Article  Google Scholar 

  • Rabier F, Thepaut JN, Courtier P (1998) Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart J Royal Meteorol Soc 124(550):1861–1887

    Article  Google Scholar 

  • Sandu A, Constantinescu EM, Carmichael GR, Chai TF, Seinfeld JH, Daescu D (2007) Localized ensemble Kalman dynamic data assimilation for atmospheric chemistry. Int Conf Comput Sci 4487:1018–1025

    Google Scholar 

  • Skjervheim JA, Evensen G, Aanonsen SI, Ruud BO, Johansen TA (2007) Incorporating 4D seismic data in reservoir simulation model using ensemble Kalman filter. SPE J 12(3):282–292

    Google Scholar 

  • Tong JX, Hu BX, Yang JZ (2010) Using data assimilation method to calibrate a heterogeneous conductivity filed conditioning on a transient flow test data. Stoch Environ Res Risk Assess. doi:10.1007/s00477-010-0392-1

  • Yeh W-G (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour Res 22(2):95–108

    Article  Google Scholar 

  • Zupanski D, Zupanski M, Grasso LD, Brummer R, Sengupta M, Jankov I, Lindsey D, Demaria M (2010) Assimilating synthetic GOES-R radiances in cloudy conditions using an ensemble-based method. Int J Remote Sens 49(9):3249–3272

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Fundamental Research Funds for the Central Universities under grant numbers 2-9-2011-286 and partly supported by the Key National Nature Science Foundation of China (Grant No. 51079101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill X. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, J., Hu, B.X. & Yang, J. Assimilating transient groundwater flow data via a localized ensemble Kalman filter to calibrate a heterogeneous conductivity field. Stoch Environ Res Risk Assess 26, 467–478 (2012). https://doi.org/10.1007/s00477-011-0534-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-011-0534-0

Keywords

Navigation