Skip to main content

Advertisement

Log in

Using radiocarbon-calibrated dendrochronology to improve tree-cutting cycle estimates for timber management in southern Amazon forests

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Growth rings are investigated in trees harvested in the second cutting cycle in southern Amazonia and have important implications for dendrochronological studies and for forest management.

Abstract

In the southern Brazilian Amazon, upland moist forests have been managed based on a polycyclic system, which cutting cycle (CC) varies from 25 to 35 years, and the minimum logging diameter (MLD) is 50 cm for all species. Many forests logged during the 1970s are being prepared for the second cycle. However, without growth and yield rates information on the remaining forests as well as for individual species, the principles of sustainable management will be jeopardized. For species with annual growth rings, such information can be obtained using dendrochronological techniques. This study investigated the periodicity of rings in Qualea paraensis and Parkia pendula in a forest that had already experienced one cutting cycle. This information was used to estimate growth and yield rates, and adjusting to equations to estimate individual species MLD and CC. Dendrochronological techniques were combined with radiocarbon analyses to confirm whether rings were annual. Rings of Q. paraensis were confirmed to be annual without radiocarbon analysis. However, P. pendula rings were poorly distinguishable; therefore, delimitation and ring counting were systematically underestimated by 10%. Growth and yield rates of managed forests were favored by logging. The MLD should be 53 cm for Q. paraensis, and 42 cm for P. pendula; and the CC must be 11 and 17 years, respectively. It is concluded that MLD and CC legally defined by the Brazilian laws are not adequate for the studied species; in addition, the use of radiocarbon-calibrated dendrochronology technique is essential to produce robust and unbiased estimates of growth and yield rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JL, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Andreacci F, Botosso PC, Galvão F (2014) Sinais climáticos em anéis de crescimento de Cedrela fissilis em diferentes tipologias de Florestas Ombrófilas do Sul do Brasil. Floresta 44:323–332. https://doi.org/10.5380/rf.v44i2.27316

    Article  Google Scholar 

  • Andreu-Hayles L, SANTOS GM, Herrera-Ramírez DA, Martin-Fernandez J, Ruiz-Carrascal D, Boza-Espinoza TE, Fuentes AF, Jorgensen PM (2015) Matching dendrochronological with the southern hemisphere 14C bomb curve to confirm annual tree rings in Pseudolmedia rígida from Bolívia. Radioc 57:1–13. https://doi.org/10.2458/azu_rc.57.18192

    Article  CAS  Google Scholar 

  • Baker JCA, Santos GM, Gloor M, Brienen RJW (2017) Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees 31:1999–2009. https://doi.org/10.1007/s00468-017-1604-9

    Article  Google Scholar 

  • Braz EM, Mattos PP, Oliveira MF, Bassos RO (2014) Strategies for achieving sustainable logging rate in the Brazilian Amazon Forest. O J For 4:100–105. https://doi.org/10.4236/ojf.2014.42015

    Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecol 146:1–12. https://doi.org/10.1007/s00442-005-0160-y

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA (2006) The use of tree rings in tropical forest management: projecting timber yields of four Bolivian tree species. For Ecol Manag 226:256–267. https://doi.org/10.1016/j.foreco.2006.01.038

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA, Martinez-Ramos MM (2010a) Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions. Oecol 163:485–496. https://doi.org/10.1007/s00442-009-1540-5

    Article  Google Scholar 

  • Brienen RJW, Lebrija-Trejos E, Zuidema PA, Martínez-Ramos MM (2010b) Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob Change Biol 16:2001–2012. https://doi.org/10.1111/j.1365-2486.2009.02059.x

    Article  Google Scholar 

  • Brienen RJW, Schöngart J, Zuidema PA (2016) Tree rings in the tropics: insights into the ecology and climate sensitivity of tropical trees. In: Goldstein G, Santiago LS (eds) Tropical tree physiology: adaptations and responses in a changing environment, Springer, Berlin, pp 439–461. https://doi.org/10.1007/978-3-319-27422-5_20

  • Chambers JQ, Higuchi N, Schimel J (1998) Ancient trees in Amazonia. Nature 391:135–136

    Article  CAS  Google Scholar 

  • Colpini C, Travagin DP, Soares TS, Silva VSM (2009) Determinação do volume, do fator de forma e da porcentagem de casca de árvores individuais em uma Floresta Ombrófila Aberta na região noroeste de Mato Grosso. Acta Amaz 39:97–104

    Article  Google Scholar 

  • Cook ER, Holmes RL (1984) Program ARSTAN users manual, laboratory of tree ring research. University of Arizona, Tucson

    Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Springer, Netherlands

    Book  Google Scholar 

  • Costa DHM, Silva JNM, Carvalho JOP (2008) Crescimento de árvores de uma área de terra firma na Floresta Nacional do tapajós após a colheita de madeira. Rev Cienc Agrar 50:63–76

    Google Scholar 

  • Cunha TA, Finger CA, Hasenauer H (2016) Tree basal area increment models for Cedrela, Amburana, Copaifera and Swietenia growing in the Amazon rain forests. For Ecol Manag 365:174–183. https://doi.org/10.1016/j.foreco.2015.12.031

    Article  Google Scholar 

  • De Ridder M, Van den Bulcke J, Van Acker J, Beeckman H (2013) Tree-ring analysis of an African long-lived pioneer species as a tool for sustainable forest management. For Ecol Manag 304:417–426. https://doi.org/10.1016/j.foreco.2013.05.007

    Article  Google Scholar 

  • Dezzeo N, Worbes M, Ishii I, Herrera R (2003) Annual tree rings revealed by radiocarbon dating in seasonally flooded forest of the Mapire River, a tributary of the lower Orinoco River, Venezuela. Plant Ecol 168:165–175

    Article  Google Scholar 

  • Douglass AE (1941) Crossdating in dendrochronology. J Forest 39:825–831

    Google Scholar 

  • Dünisch O, Latorraca JVF (2016) Impact of site conditions changes on the tree ring records suitability as climate proxies in the Brazilian Amazon. Floresta e Ambiente 23:258–269. https://doi.org/10.1590/2179-8087.014215

    Article  Google Scholar 

  • Durgante FM (2016) Dinâmica de crescimento e incremento de espécies dominantes no Amazonas. Instituto Nacional de Pesquisas da Amazônia Manaus

  • Fichtler E, Clark DA, Worbes M (2003) Age and Long-term growth of trees in an old-growth Tropical Rain Forest, based on analyses of tree rings and 14C. Biotropica 35:306–317. https://doi.org/10.1111/j.1744-429.2003.tb00585.x

    Article  Google Scholar 

  • Groenendijk P, Sass-Klaassen U, Bongers F, Zuidema PA (2014) Potential of tree-ring analysis in a wet tropical forest: A case study on 22 commercial tree species in Central Africa. For Ecol Manag 323:65–78. https://doi.org/10.1016/j.foreco.2014.03.037

    Article  Google Scholar 

  • Higuchi MIG, Higuchi N (2012) A floresta amazônica e suas múltiplas dimensões. Uma proposta de educação ambiental, Manaus

    Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocorbon 55(4):2059–2072. https://doi.org/10.2458/azu_js_rc.v55i2.16177

    Article  CAS  Google Scholar 

  • IBGE-Instituto Brasileiro de Geografia e Estatística (2012) Manual Técnico da Vegetação Brasileira: Série Manuais Técnicos em Geociências. 2ªed revista e ampliada, Rio de Janeiro

    Google Scholar 

  • INPE-Instituto Nacional de Pesquisas Espaciais (2017) Projeto Prodes—Monitoramento da Amazônia brasileira por satélite. Taxas anuais de 1988–2016. http://www.obt.inpe.br/prodes/prodes_1988_2016n.htm Accessed 17 May 2017

  • Jardim FCS, Soares MS (2010) Comportamento de Sterculia pruriens (Aubl.) Schum. em floresta tropical manejada em Moju-PA. Acta Amaz 40:535–542

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR reanalysis 40 year project. Bull Amer Meteor Soc 77:437–471

    Article  Google Scholar 

  • Leoni JM, Schöngart J (2011) Fonseca Júnior da SF. Growth and population structure of the tree species Malouetia tamaquarina (Aubl.) (Apocynaceae) in the central Amazonian floodplain forests and their implication for management. For Ecol Manag 261:62–67. https://doi.org/10.1016/j.foreco.2010.09.025

    Article  Google Scholar 

  • Lisi CS, Pessenda LCR, Tomazello M, Rozanski K (2001) 14C Bomb effect in tree rings of tropical and subtropical species of Brazil. Tree-ring research 57:191–196

    Google Scholar 

  • López L, Villalba R, Bravo F (2013) Cumulative diameter growth and biological rotation age for seven tree species in the Cerrado biogeographical province of Bolivia. For Ecol Manag 292:49–55. https://doi.org/10.1016/j.foreco.2012.12.011

    Article  Google Scholar 

  • Lorenzi H (2002) Árvores brasileiras—manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Plantarum, Nova Odessa

    Google Scholar 

  • Loureiro AA, Silva MF (1977) Contribuição para o estudo dendrológico e anatômico da madeira de três espécies de Qualea (Vochysiaceae) da Amazônia. Acta Amaz 7:407–416

    Article  Google Scholar 

  • Loureiro AA, Freitas JA, Ramos KBL, Freitas CAA (2000) Essências madeireiras da Amazônia. MCT/INPA/CPPF, Manaus

    Google Scholar 

  • Mozeto AA, Fritz P, Moreira MZ, Vetter E, Aravena R, Salati E, Drimmie RJ (1998) Growth rates of natural Amazonian forest trees based on radiocarbon measurements. Radiocorbon 30:1–6. https://doi.org/10.1017/S0033822200043903

    Google Scholar 

  • Nakamura T, Masuda K, Miyake F, Nagaya K, Yoshimitsu T (2013) Radiocarbon ages of annual rings from Japanese wood evident age offset based on intcal09. Radiocorbon 55:763–770. https://doi.org/10.1017/S0033822200057921

    Article  CAS  Google Scholar 

  • Nebel G (2001) Minquartia guianensis Aubl.: use, ecology and management in forestry and agroforestry. For Ecol Manag 150:115–124. https://doi.org/10.1016/S0378-1127(00)00685-X

    Article  Google Scholar 

  • Nydal R, Lovseth K (1983) Tracing bomb 14C in the atmosphere 1962–1980. J Geophys Res 88:3621–3642. https://doi.org/10.1029/JC088iC06p03621

    Article  CAS  Google Scholar 

  • Ohashi S, Durgante FM, Kagawa A, Kajimoto T, Trumbore SE, Xu X, Ishizuka M, Higuchi N (2015) Seasonal variation in the stable oxygen ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest. Oecologia 180:685–696. https://doi.org/10.1007/s00442-015-3509-x

    Article  PubMed  Google Scholar 

  • Orosco LEB, Morales SH, Hernandez GG, Garcia VC, Diaz JV (2013) Dendrochronological potential of Fraxinus uhdei and its use as bioindicator of fossil Co2 emissions deduced from radiocarbon concentrations in tree rings. Radioc 55:833–840. https://doi.org/10.1017/S0033822200057994

    Article  Google Scholar 

  • Pucha-Cofrep D, Peters T, Bräuning A (2015) Wet season precipitation during the past century reconstructed from tree-rings of a tropical dry forest in Southern Ecuador. Global Planet Change 133:65–78. https://doi.org/10.1016/j.gloplacha.2015.08.003

    Article  Google Scholar 

  • Ramírez JA, del Valle JI (2011) Paleoclima de La Guajira, Colombia; según los anillos de crecimiento de Capparis odoratissima (Capparidaceae). Rev Biol Trop 59:1389–1405

    PubMed  Google Scholar 

  • Ramsey CB, Dee M, Lee S, Nakagawa T, Staff R (2010) Developments in the calibration and modelling of radiocarbon dates. Radiocorbon 52:953–961. https://doi.org/10.1017/S0033822200046063

    Article  Google Scholar 

  • Reis ARS, Abreu JLL, Pinho DM, Lisboa PLB, Urbinati CV (2014) Caracterização anatômica da madeira de mandioqueira (Qualea Aubl.) comercializada no mercado madeireiro do estado do Pará. Enciclopedia Biosfera 10:448–462

    Google Scholar 

  • Rodríguez R, Mabres A, Luckman B, Evans M, Masiokas M, Ektvedt TM (2005) “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendroc 22:181–186. https://doi.org/10.1016/j.dendro.2005.05.002

    Article  Google Scholar 

  • Rosa SA, Barborsa ACMC., Junk WJ, Nunes da Cunha C, Piedade MTF, Scabin AB, Schöngart J (2017) Growth models based on tree-ring data for the Neotropical tree species Calophyllum brasiliense across different Brazilian wetlands: implications for conservation and management. Trees 31:729–742. https://doi.org/10.1007/s00468-016-1503-5

    Article  Google Scholar 

  • Rozendaal DMA, Brienen RJW, Soliz-Gamboa CC, Zuidema PA (2010) Tropical tree rings reveal preferential survival of fast-growing juveniles and increased juvenile growth rates over time. New Phytol 185:759–769. https://doi.org/10.1111/j.1469-8137.2009.03109.x

    Article  PubMed  Google Scholar 

  • Santos GM, Linares R, Lisi CS, Tomazello Filho M (2015) Annual growth rings in a sample of Paraná pine (Araucaria angustifolia): Toward improving the 14C calibration curve for the Southern Hemisphere. Quat Geo 25:96–103. https://doi.org/10.1016/j.quageo.2014.10.004

    Article  Google Scholar 

  • Scabin AB, Costa FRC, Schöngart J (2012) The spatial distribution of illegal logging in the Anavilhanas archipelago (Central Amazonia) and logging impacts on species. Environ Conserv 39:111–121. https://doi.org/10.1017/S0376892911000610

    Article  Google Scholar 

  • Schöngart J (2003) Dendrochronologische Untersuchungen in Überschwemmungswäldern der várzea Zentralamazoniens. Göttinger Beiträge zur Land und Forstwirtschaft in den Tropen und Subtropen 149. Erich Goltze Verlag, Göttingen

    Google Scholar 

  • Schöngart J (2008) Growth-oriented logging (GOL): a new concept towards sustainable forest management in Central Amazonian várzea floodplanis. For Ecol Manag 256:46–58. https://doi.org/10.1016/j.foreco.2008.03.037

    Article  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M, Piedade MTF, Krambeck HJ, Junk WJ (2007) Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Ann Forest Sci 64:657–664. https://doi.org/10.1051/forest:2007044

    Article  Google Scholar 

  • Schöngart J, Gribel R, Fonseca-Junior SF, Haugaasen T (2015) Age and growth patterns of Brazil nut trees (Bertholletia excelsa Bonpl.) in Amazonia, Brazil. Biot 47:550–558. https://doi.org/10.1111/btp.12243

    Article  Google Scholar 

  • Silva CA (1992) Variação dimensional dos elementos xilemáticos em duas espécies madeireiras da Amazônia. Acta Amaz 22:261–274

    Article  Google Scholar 

  • Silva JNM, Carvalho JOP, Lopes do JCA, Almeida BF de, Costa DHM, Oliveira LC de, Vanclay JK, Skovsgaard JP (1995) Growth and yield of a tropical rain forest in the Brazilian Amazon 13 years after logging. For Ecol Manag 71:267–274. https://doi.org/10.1016/0378-1127(94)06106-S

    Article  Google Scholar 

  • Silva CS da, Silva F da, Carneiro VMC, Lima AJN, Santos J dos, Higuchi N (2016) Avaliação da estrutura de uma floresta submetida a diferentes intensidades de anelamento, 28 anos após a intervenção. Sci For 44:987–999. https://doi.org/10.18671/scifor.v44n112.20

    Google Scholar 

  • Soliz-Gamboa CC, Rozendaal DMA, Ceccantini G, Angyalossy V, Van Der Borg K, Zuidema PA (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27. https://doi.org/10.1007/s00468-010-0468-z

    Article  Google Scholar 

  • Souza MH, Magliano MM, Camargos JAA (1997) Madeiras tropicais brasileiras. IBAMA/LPF, Brasília

    Google Scholar 

  • Souza AP, Mota LL, Zamadei T, Martim CC, Almeida FT, Paulino J (2013) Classificação climática e balança hídrico climatológico no estado de Mato Grosso. Nativa 1:34–43

    Article  Google Scholar 

  • Souza DV, Carvalho, JOPde,, Silva JNM, Jardim FCdaS (2014) Mendes FdaS, Melo LdeO. Growth of Manilkara huberi and Manilkara paraensis after logging and silvicultural treatments in the municipality of Paragominas, Para, Brazil. Floresta 44:485–496

    Article  Google Scholar 

  • Steinhof A, Adamiec G, Gleixner G, van Klinken GH, Wagner T (2004) The new 14C analysis laboratory in JENA. Germany Radioc 46:51–58. https://doi.org/10.1017/S0033822200039345

    CAS  Google Scholar 

  • Steinhof A, Altenburg M, Matchts H (2017) Sample preparation at the JENA 14C laboratory. Radioc 59:815–830. https://doi.org/10.1017/RDC.2017.50

    Article  CAS  Google Scholar 

  • Vatraz S, Carvalho JOP de, Gomes JM, Taffarel M, Ferreira FER (2012) Efeitos de tratamentos silviculturais sobre o crescimento de Laetia procera (Poepp.) Eichler em Paragominas, PA, Brasil. Sci For 40:95–102

    Google Scholar 

  • Vidal E, Viana VM, Batista JLF (2002) Crescimento de floresta tropical três anos após colheita de madeira com e sem manejo florestal na Amazônia oriental. Sci For 61:133–143

    Google Scholar 

  • Vieira SA (2003) Mudanças globais e taxa de crescimento arbóreo na Amazônia. Universidade de São Paulo, São Paulo

    Google Scholar 

  • Vieira S, Trumbore S, Camargo PB, Selhorst D, Chambers JQ, Higuchi N, Martinelli LA (2005) Slow growth rates of amazon trees: consequences for carbon cycling. PNAS 102:18502–18507. https://doi.org/10.1073/pnas.0505966102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JC, FULS A, Visser E (2001) Radiocarbon adjustments to the dendrochronology of a yellowwood tree. S Afric J Sci 97:164–166

    CAS  Google Scholar 

  • Wils THG, Robertson J, Eshetu Z, Touchan R, Sass-Klaassen U, Koprowski M (2011) Crossdating Juniperus procera from North Gondar. Ethiopia Trees 25:71–82. https://doi.org/10.1007/s00468-010-0475-0

    Article  Google Scholar 

  • Worbes M (1995) How to measure growth dynamics in tropical trees—a review. IAWA J 16:337–351

    Article  Google Scholar 

  • Worbes M (2002) One hundred years of tree-ring research in the tropics—a brief history and na outlook to future challenges. Dendroc 20:217–231

    Article  Google Scholar 

  • Worbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb test. Ecol 70:503–507

    Article  Google Scholar 

  • Worbes M, Staschel R, Roloff A, Junk WJ (2003) Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. For Ecol Manag 173:105–123. https://doi.org/10.1016/S0378-1127(01)00814-3

    Article  Google Scholar 

  • Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ et al Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, Springer, The Netherlands pp 329–346

    Chapter  Google Scholar 

  • Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21:414–416. https://doi.org/10.1139/x91-053

    Article  Google Scholar 

  • Zobel B, Talbert J (1984) Applied forest tree improvement. Wiley, New York

    Google Scholar 

  • Zuidema PA, Brienen RJW, Schöngart J (2012) Tropical forest warming: looking backwards for more insights. Trends Ecol Evol 27:193–194. https://doi.org/10.1016/j.tree.2011.12.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the logistical and structural support provided by the following institutions: Federal University of Mato Grosso, National Institute of Research of the Amazon, Federal Rural University of Rio de Janeiro and the University of California, which were all of fundamental importance for accomplishing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirceu Lucio C. de Miranda.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by A. Gessler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Miranda, D.L.C., Higuchi, N., Trumbore, S.E. et al. Using radiocarbon-calibrated dendrochronology to improve tree-cutting cycle estimates for timber management in southern Amazon forests. Trees 32, 587–602 (2018). https://doi.org/10.1007/s00468-018-1658-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-018-1658-3

Keywords

Navigation