Skip to main content
Log in

Responses of mycorrhizal jack pine (Pinus banksiana) seedlings to NaCl and boron

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

In earlier studies, we established that mycorrhizal associations protect plants against salt stress. However, elevated boron levels are often present in saline soils and little is known about the effects of boron on salt resistance of mycorrhizal plants. In the present study, we inoculated jack pine (Pinus banksiana) seedlings with Hebeloma sp., Suillus tomentosus and Wilcoxina mikolae var. mikolae to study the effects of mycorrhizal associations on seedling responses to boron and salt. Seedlings were grown in the greenhouse and subjected to 60 mM NaCl, 2 mM H3BO3 or 60 mM NaCl + 2 mM H3BO3 treatments for 4 weeks. Dry weights, shoot:root ratios and chlorophyll concentrations were higher in inoculated seedlings for all treatments compared with the non-inoculated plants. When applied with NaCl, B aggravated needle necrosis while reducing Cl concentrations in shoots of non-inoculated plants. Plants treated with 2 mM H3BO3 + 60 mM NaCl had similar concentrations of Na and B to those that were treated separately with 60 mM NaCl and 2 mM H3BO3. Plants inoculated with mycorrhizal fungi had lower shoot Na concentrations compared with non-inoculated seedlings, but showed relatively little impact from elevated B concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apostol KG, Zwiazek JJ (2004) Boron and water uptake in jack pine (Pinus banksiana) seedlings. Environ Exp Bot 51:145–153. doi:10.1016/j.envexpbot.2003.09.002

    Article  CAS  Google Scholar 

  • Apostol KG, Zwiazek JJ, MacKinnon MD (2002) NaCl and Na2SO4 alter responses of jack pine (Pinus banksiana) seedlings to boron. Plant Soil 240:321–329. doi:10.1023/A:1015753128876

    Article  CAS  Google Scholar 

  • Bastías E, Fernández-García N, Carvajal M (2004) Aquaporin functionality in roots of Zea mays in relation to the interactive effects of boron and salinity. Plant Biol 6:415–421. doi:10.1055/s-2004-820889

    Article  PubMed  CAS  Google Scholar 

  • Bois G, Bigras F, Bertrand A, Pichè Y, Fung MYP, Khasa DP (2006) Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16:99–109. doi:10.1007/s00572-005-0020-y

    Article  PubMed  CAS  Google Scholar 

  • Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:855–101. doi:10.1023/A:1004211925160

    Article  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grave T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research Monograph 32, Canberra

  • Carbonell-Barrachina AA, Burlo-Carbonell F, Mataix-Beneyto J (1997) Effect of sodium arsenite and sodium chloride on bean plant nutrition (macronutrients). J Plant Nutr 20:1617–1633

    CAS  Google Scholar 

  • Cumming JR, Taylor CJ (1990) Mechanisms of metal tolerance in plants: physiological adaptations for exclusion of metal ions from the cytoplasm. In: Allen NS (ed) Stress responses in plants: adaptation and acclimation. Wiley-Liss, New York, pp 328–356

    Google Scholar 

  • Danielson RM (1984) Ectomycorrhizal associations in jack pine stands in northeastern Alberta. Can J Bot 62:932–939

    Article  Google Scholar 

  • Danielson RM, Visser S (1989) Host response to inoculation and behavior of introduced and indigenous ectomycorrhizal fungi of jack pine grown on oil-sands tailings. Can J Res 19:1412–1421. doi:10.1139/x89-216

    Article  Google Scholar 

  • Denny H, Wilkins DA (1987) Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol 106:545–553

    CAS  Google Scholar 

  • Dordas C, Brown PH (2001) Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo). Plant Soil 235:95–103. doi:10.1023/A:1011837903688

    Article  CAS  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. Sinauer Associates Inc., Sunderland

  • FTFC (1995) Advances in oil sands tailings research. Fine Tailings Fundamentals Consortium. Alberta Department of Energy, Oil Sands and Research Division, Edmonton, AB, Canada

  • Franklin JA, Zwiazek JJ (2004) Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulfate. Physiol Plant 120:482–490. doi:10.1111/j.0031-9317.2004.00246.x

    Article  PubMed  CAS  Google Scholar 

  • Gupta UC, Jame YW, Campbell CA, Leyshon AJ, Nicholaichuk W (1985) Boron toxicity and deficiency. A review. Can J Soil Sci 65:381–409

    Article  CAS  Google Scholar 

  • Hagerman SM, Jones MD, Bradfield GE, Sakakibara SM (1999) Ectomycorrhizal colonization of Picea engelmannii × Picea glauca seedlings planted across cut blocks of different sizes. Can J Res 29:1856–1870. doi:10.1139/cjfr-29-12-1856

    Article  Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to toxic metals in the environment? Plant Soil 189:303–319. doi:10.1023/A:1004255006170

    Article  CAS  Google Scholar 

  • Izzo A, Nguyen DT, Bruns TD (2006) Spatial structure and richness of ectomycorrhizal fungi colonizing bioassay seedlings from resistant propagules in a Sierra Nevada forest: comparisons using two hosts that exhibit different seedling establishment patterns. Mycologia 98:374–383. doi:10.3852/mycologia.98.3.374

    Article  PubMed  Google Scholar 

  • Jentschke G, Goldbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116. doi:10.1034/j.1399-3054.2000.100201.x

    Article  CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1988) Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. II. Uptake of nickel, calcium, magnesium, phosphorus and iron. New Phytol 108:461–470. doi:10.1111/j.1469-8137.1988.tb04187.x

    Article  CAS  Google Scholar 

  • Karst J, Marczak L, Jones MD, Turkington R (2008) The mutualism–parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysis. Ecology 89:1032–1042. doi:10.1890/07-0823.1

    Article  PubMed  Google Scholar 

  • Koske RE, Testier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Am Newslett 34:59

    Google Scholar 

  • Landhäusser SM, Muhsin TM, Zwiazek JJ (2002) The effect of ectomycorrhizae on water relations in aspen (Populus tremuloides) and white spruce (Picea glauca) at low soil temperatures. Can J Bot 80:684–689. doi:10.1139/b02-047

    Article  Google Scholar 

  • Lehto T, Lavola A, Kallio E, Aphalo PJ (2004) Boron uptake by ectomycorrhiza of silver birch. Mycorrhiza 14:209–212. doi:10.1007/s00572-003-0290-1

    Article  PubMed  CAS  Google Scholar 

  • Loomis WD, Durs RW (1992) The chemistry and biology of boron. Biofactors 3:229–239

    PubMed  CAS  Google Scholar 

  • Lovatt CJ, Bates LM (1984) Early effects of excess boron on photosynthesis and growth of Cucurbita pepo. J Exp Bot 35:297–305. doi:10.1093/jxb/35.3.297

    Article  CAS  Google Scholar 

  • Mah K, Tackaberry LE, Egger KB, Massicotte HB (2001) The impacts of broadcast burning after clear-cutting on the diversity of ectomycorrhizal fungi associated with hybrid spruce seedlings in central British Columbia. Can J Res 31:224–235. doi:10.1139/cjfr-31-2-224

    Article  Google Scholar 

  • Marcar NE, Guo J, Crawford DF (1999) Response of Eucalyptus camaldulensis Dehnh., E. globulus Labill. ssp. globulus and E. grandis W.Hill to excess boron and sodium chloride. Plant Soil 208:251–257. doi:10.1023/A:1004594028069

    Article  CAS  Google Scholar 

  • Marjanović Ž, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiß M, Hampp R et al (2005) Aquaporin in poplar: What a difference a symbiont makes!. Planta 222:258–268. doi:10.1007/s00425-005-1539-z

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Martínez-Ballesta MC, Silva C, López-Berenguer C, Cabañero FJ, Carvajal M (2006) Plant aquaporins: new challenge for water and nutrient uptake in saline environment. Plant Biol 8:535–546. doi:10.1055/s-2006-924172

    Article  PubMed  CAS  Google Scholar 

  • Mason PA (1980) Aseptic synthesis of sheathing (ecto-) mycorrhizas. In: Ingram DS, Helgeson JP (eds) Tissue culture methods for plant pathologists. Blackwell, Oxford, pp 173–178

    Google Scholar 

  • Muhsin TM, Zwiazek JJ (2002a) Ectomycorrhizae increase water conductance and protect white spruce (Picea glauca) seedlings against salt stress. Plant Soil 238:217–225. doi:10.1023/A:1014435407735

    Article  CAS  Google Scholar 

  • Muhsin TM, Zwiazek JJ (2002b) Ectomycorrhizas increase apoplastic water transport and hydraulic conductivity in Ulmus americana seedlings. New Phytol 153:153–158. doi:10.1046/j.0028-646X.2001.00297.x

    Article  Google Scholar 

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198. doi:10.1023/A:1004272227886

    Article  CAS  Google Scholar 

  • Nguyen H, Calvo Polanco M, Zwiazek JJ (2006) Gas exchange and growth responses of ectomycorrhizal Picea mariana, Picea glauca and Pinus banksiana seedlings to NaCl and Na2SO4. Plant Biol 8:646–652. doi:10.1055/s-2006-924106

    Article  PubMed  CAS  Google Scholar 

  • Power PP, Woods WO (1997) The chemistry of boron and its specification in plants. Plant Soil 193:1–13. doi:10.1023/A:1004231922434

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. NRC University Press, Ottawa

    Google Scholar 

  • Renault S, Lait C, Zwiazek JJ, MacKinnon M (1998) Effect of high salinity tailings water produced from gypsum treatment of oil sands tailings on plants of boreal forest. Environ Pollut 102:177–178. doi:10.1016/S0269-7491(98)00099-2

    Article  CAS  Google Scholar 

  • Renault S, Paton E, Nilsson G, Zwiazek JJ, MacKinnon MD (1999) Responses of boreal plants to high salinity oil sands tailings water. J Environ Qual 28:1957–1962

    Article  CAS  Google Scholar 

  • Rudawska M, Leski T, Trocha LK, Gornowicz R (2006) Ectomycorrhizal status of Norway spruce seedlings from bare-root forest nurseries. For Ecol Manage 236:375–384

    Article  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Sands R, Clarke ARP (1977) Response of radiata pine to salt stress. I. Water relations, osmotic adjustment and salt uptake. Aust J Plant Physiol 4:637–646

    Article  CAS  Google Scholar 

  • Scales PF, Peterson RL (1991) Structure and development of Pinus banksiana-Wilcoxina ectendomycorrhizae. Can J Bot 69:2135–2148. doi:10.1139/b91-268

    Article  Google Scholar 

  • Šesták Z, Čatský J, Jarvis PG (1971) Plant photosynthetic production. Manual of methods. Dr W. Junk N·V. Publishers, The Hague

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, New York, p 605

    Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular–mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed  CAS  Google Scholar 

  • Wagg C, Pautler M, Massicotte HB, Peterson RL (2008) The co-ocurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of Pinaceae. Mycorrhiza 18:103–110. doi:10.1007/s00572-007-0157-y

    Article  PubMed  Google Scholar 

  • Yi H, Calvo Polanco M, MacKinnon MD, Zwiazek JJ (2008) Ectomycorrhizal Laccaria bicolor and Hebeloma crustuliniforme improve NaCl resistance but do not reduce sodium uptake in Populus tremuloides and Betula papyrifera seedlings. Environ Exp Bot 62:357–363. doi:10.1016/j.envexpbot.2007.10.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded through the Natural Sciences and Engineering Research Council of Canada Strategic Research Grant to JJZ and MDJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz J. Zwiazek.

Additional information

Communicated by T. Hogetsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvo Polanco, M., Zwiazek, J.J., Jones, M.D. et al. Responses of mycorrhizal jack pine (Pinus banksiana) seedlings to NaCl and boron. Trees 22, 825–834 (2008). https://doi.org/10.1007/s00468-008-0243-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0243-6

Keywords

Navigation