Skip to main content
Log in

The brain in pediatric chronic kidney disease–the intersection of cognition, neuroimaging, and clinical biomarkers

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Brain growth and development occur at peak rates in early childhood through adolescence, and for some children, this must happen in conjunction with chronic kidney disease (CKD), associated medical conditions, and their treatment(s). This review provides an overview of key findings to date on the topic of the brain in pediatric CKD. Here, we specifically address the topics of neuroimaging and cognition in pediatric CKD with consideration to biomarkers of disease progression that may impact cognition. Current cognitive data suggest that most children with mild to moderate CKD do not exhibit significant cognitive impairments, but, rather, the presence of somewhat lower intellectual abilities and subtle deficits in selected executive functions. Although promising, modern neuroimaging data remain inconclusive in linking cognitive findings to neuroimaging correlates in the pediatric CKD population. Certainly, it is important to note that even subtle cognitive concerns can present barriers to learning, social functioning, and overall quality of life if not appropriately recognized or addressed. Further longitudinal research utilizing concurrent and targeted cognitive and neuroimaging evaluations is warranted to better understand the impact of CKD progression on brain development and associated neurocognitive outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ledermann SE, Scanes ME, Fernando ON, Duffy PG, Madden SJ, Trompeter RS (2000) Long-term outcome of peritoneal dialysis in infants. J Pediatr. 136(1):24–29

    CAS  Google Scholar 

  2. Hulstijn-Dirkmaat GM, Damhuis IH, Jetten ML, Koster AM, Schroder CH (1995) The cognitive development of pre-school children treated for chronic renal failure. Pediatr Nephrol. 9(4):464–469

    CAS  Google Scholar 

  3. Warady BA, Belden B, Kohaut E (1999) Neurodevelopmental outcome of children initiating peritoneal dialysis in early infancy. Pediatr Nephrol. 13(9):759–765

    CAS  Google Scholar 

  4. Duquette PJ, Hooper SR, Icard PF, Hower SJ, Mamak EG, Wetherington CE et al (2009) Neurodevelopmental status and adaptive behaviors in preschool children with chronic kidney disease. J Sp Ed. 43(1):45–51

    Google Scholar 

  5. Hooper SR, Gerson AC, Johnson RJ, Mendley SR, Shinnar S, Lande MB et al (2016) Neurocognitive, Social-Behavioral, and Adaptive Functioning in Preschool Children with Mild to Moderate Kidney Disease. J Dev Behav Pediatr. 37(3):231–238

    PubMed Central  Google Scholar 

  6. Hooper SR, Gerson AC, Butler RW, Gipson DS, Mendley SR, Lande MB et al (2011) Neurocognitive functioning of children and adolescents with mild-to-moderate chronic kidney disease. Clin J Am Soc Nephrol. 6(8):1824–1830

    PubMed Central  Google Scholar 

  7. Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G et al (2006) Design and methods of the Chronic Kidney Disease in Children (CKiD) prospective cohort study. Clin J Am Soc Nephrol. 1(5):1006–1015

    PubMed Central  Google Scholar 

  8. Gioia GA, Isquith PK, Guy SC, Kenworthy L (2000) Behavior Rating Inventory of Executive Function. Odessa, PAR, Inc

    Google Scholar 

  9. Mendley SR, Matheson MB, Shinnar S, Lande MB, Gerson AC, Butler RW et al (2015) Duration of chronic kidney disease reduces attention and executive function in pediatric patients. Kidney Int. 87(4):800–806

    Google Scholar 

  10. Gipson DS, Hooper SR, Duquette PJ, Wetherington CE, Stellwagen KK, Jenkins TL et al (2006) Memory and executive functions in pediatric chronic kidney disease. Child Neuropsychol. 12(6):391–405

    Google Scholar 

  11. Fennell EB, Fennell RS, Mings E, Morris MK (1986) The effects of various modes of therapy for end stage renal disease on cognitive performance in a pediatric population--a preliminary report. Int J Pediatr Nephrol. 7(2):107–112

    CAS  Google Scholar 

  12. Harshman LA, Johnson RJ, Matheson MB, Kogon AJ, Shinnar S, Gerson AC et al (2018) Academic achievement in children with chronic kidney disease: a report from the CKiD cohort. Pediatr Nephrol.

  13. Duquette PJ, Hooper SR, Wetherington CE, Icard PF, Gipson DS (2007) Brief report: intellectual and academic functioning in pediatric chronic kidney disease. J Pediatr Psychol. 32(8):1011–1017

    Google Scholar 

  14. Richardson KL, Weiss NS, Halbach S (2018) Chronic School Absenteeism of Children with Chronic Kidney Disease. J Pediatr. 199:267–271

    PubMed Central  Google Scholar 

  15. Chen K, Didsbury M, van Zwieten A, Howell M, Kim S, Tong A et al (2018) Neurocognitive and Educational Outcomes in Children and Adolescents with CKD: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol. 13(3):387–397

    PubMed Central  Google Scholar 

  16. Amur S. From our perspective: Clinical biomarker qualification: U.S. Food & Drug Administration; Accessed Aug 20 2019. [Available from: https://www.fda.gov/drugs/news-events-human-drugs/our-perspective-clinical-biomarker-qualification.

  17. Lande MB, Gerson AC, Hooper SR, Cox C, Matheson M, Mendley SR et al (2011) Casual blood pressure and neurocognitive function in children with chronic kidney disease: a report of the children with chronic kidney disease cohort study. Clin J Am Soc Nephrol. 6(8):1831–1837

    PubMed Central  Google Scholar 

  18. Havlik RJ, Foley DJ, Sayer B, Masaki K, White L, Launer LJ (2002) Variability in midlife systolic blood pressure is related to late-life brain white matter lesions: the Honolulu-Asia Aging study. Stroke. 33(1):26–30

    Google Scholar 

  19. Crichton GE, Elias MF, Dore GA, Torres RV, Robbins MA (2014) Measurement-to-measurement blood pressure variability is related to cognitive performance: the Maine Syracuse study. Hypertension. 64(5):1094–1101

    CAS  PubMed Central  Google Scholar 

  20. Yano Y, Ning H, Allen N, Reis JP, Launer LJ, Liu K et al (2014) Long-term blood pressure variability throughout young adulthood and cognitive function in midlife: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Hypertension. 64(5):983–988

    CAS  PubMed Central  Google Scholar 

  21. Lande MB, Mendley SR, Matheson MB, Shinnar S, Gerson AC, Samuels JA et al (2016) Association of blood pressure variability and neurocognition in children with chronic kidney disease. Pediatr Nephrol. 31(11):2137–2144

    PubMed Central  Google Scholar 

  22. Jassal SV, Roscoe J, LeBlanc D, Devins GM, Rourke S (2008) Differential impairment of psychomotor efficiency and processing speed in patients with chronic kidney disease. Int Urol Nephrol. 40(3):849–854

    Google Scholar 

  23. Waldstein SR (1995) Hypertension and neuropsychological function: a lifespan perspective. Exp Aging Res. 21(4):321–352

    CAS  Google Scholar 

  24. Verbitsky M, Kogon AJ, Matheson M, Hooper SR, Wong CS, Warady BA et al (2017) Genomic Disorders and Neurocognitive Impairment in Pediatric CKD. J Am Soc Nephrol. 28(8):2303–2309

    CAS  PubMed Central  Google Scholar 

  25. Moodalbail DG, Reiser KA, Detre JA, Schultz RT, Herrington JD, Davatzikos C et al (2013) Systematic review of structural and functional neuroimaging findings in children and adults with CKD. Clin J Am Soc Nephrol. 8(8):1429–1448

    PubMed Central  Google Scholar 

  26. Passer JA (1977) Cerebral atrophy in end-stage uremia. Proc Clin Dial Transplant Forum. 7:91–94

    CAS  Google Scholar 

  27. Elzouki A, Carroll J, Butinar D, Moosa A (1994) Improved neurological outcome in children with chronic renal disease from infancy. Pediatr Nephrol. 8(2):205–210

    CAS  Google Scholar 

  28. Papageorgiou C, Ziroyannis P, Vathylakis J, Grigoriadis A, Hatzikonstantinou V, Capsalakis Z (1982) A comparative study of brain atrophy by computerized tomography in chronic renal failure and chronic hemodialysis. Acta Neurol Scand. 66(3):378–385

    CAS  Google Scholar 

  29. Steinberg A, Efrat R, Pomeranz A, Drukker A (1985) Computerized tomography of the brain in children with chronic renal failure. The International journal of pediatric nephrology. 6(2):121–126

    CAS  Google Scholar 

  30. Schnaper HW, Cole BR, Hodges FJ, Robson AM (1983) Cerebral cortical atrophy in pediatric patients with end-stage renal disease. Am J Kidney Dis. 2(6):645–650

    CAS  Google Scholar 

  31. La Greca G, Biasioli S, Chiaramonte S, Dettori P, Fabris A, Feriani M et al (1982) Studies on brain density in hemodialysis and peritoneal dialysis. Nephron. 31(2):146–150

    Google Scholar 

  32. Dettori P, La Greca G, Biasioli S, Chiaramonte S, Fabris A, Feriani M et al (1982) Changes of cerebral density in dialyzed patients. Neuroradiology. 23(2):95–99

    CAS  Google Scholar 

  33. Kretzschmar K, Nix W, Zschiedrich H, Philipp T (1983) Morphologic cerebral changes in patients undergoing dialysis for renal failure. AJNR Am J Neuroradiol. 4(3):439–441

    CAS  Google Scholar 

  34. Hartung EA, Erus G, Jawad AF, Laney N, Doshi JJ, Hooper SR et al (2018) Brain Magnetic Resonance Imaging Findings in Children and Young Adults With CKD. American journal of kidney diseases : the official journal of the National Kidney Foundation. 72(3):349–359

    Google Scholar 

  35. Kodl CT, Franc DT, Rao JP, Anderson FS, Thomas W, Mueller BA et al (2008) Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes. 57(11):3083–3089

    CAS  PubMed Central  Google Scholar 

  36. Kozera GM, Dubaniewicz M, Zdrojewski T, Madej-Dmochowska A, Mielczarek M, Wojczal J et al (2010) Cerebral vasomotor reactivity and extent of white matter lesions in middle-aged men with arterial hypertension: a pilot study. Am J Hypertens. 23(11):1198–1203

    Google Scholar 

  37. Matsuda-Abedini M, Fitzpatrick K, Harrell WR, Gipson DS, Hooper SR, Belger A et al (2018) Brain abnormalities in children and adolescents with chronic kidney disease. Pediatr Res. 84(3):387–392

    PubMed Central  Google Scholar 

  38. Liu HS, Hartung EA, Jawad AF, Ware JB, Laney N, Port AM et al (2018) Regional Cerebral Blood Flow in Children and Young Adults with Chronic Kidney Disease. Radiology. 288(3):849–858

    PubMed Central  Google Scholar 

  39. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A. 98(7):4259–4264

    CAS  PubMed Central  Google Scholar 

  40. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A. 98(2):676–682

    CAS  PubMed Central  Google Scholar 

  41. Simpson JR Jr, Snyder AZ, Gusnard DA, Raichle ME (2001) Emotion-induced changes in human medial prefrontal cortex: I. During cognitive task performance. Proc Natl Acad Sci U S A. 98(2):683–687

    CAS  PubMed Central  Google Scholar 

  42. Raichle ME (2015) The brain's default mode network. Annu Rev Neurosci. 38:433–447

    CAS  Google Scholar 

  43. Steen RG, Emudianughe T, Hankins GM, Wynn LW, Wang WC, Xiong X et al (2003) Brain imaging findings in pediatric patients with sickle cell disease. Radiology. 228(1):216–225

    Google Scholar 

  44. Miranda AS, Cordeiro TM, Dos Santos Lacerda Soares TM, Ferreira RN, Simoes ESAC (2017) Kidney-brain axis inflammatory cross-talk: from bench to bedside. Clin Sci (Lond). 131(11):1093–1105

    CAS  Google Scholar 

  45. Bugnicourt JM, Godefroy O, Chillon JM, Choukroun G, Massy ZA (2013) Cognitive disorders and dementia in CKD: the neglected kidney-brain axis. J Am Soc Nephrol. 24(3):353–363

    CAS  Google Scholar 

  46. Knight A, Kogon AJ, Matheson MB, Warady BA, Furth SL, Hooper SR (2017) Cognitive Function in Children with Lupus Nephritis: A Cross-Sectional Comparison with Children with Other Glomerular Chronic Kidney Diseases. J Pediatr. 189:181–188 e1

    PubMed Central  Google Scholar 

  47. Hooper SR (2017) Risk Factors for Neurocognitive Functioning in Children with Autosomal Recessive Polycystic Kidney Disease. Front Pediatr. 5:107

    PubMed Central  Google Scholar 

  48. Lande MB, Batisky DL, Kupferman JC, Samuels J, Hooper SR, Falkner B et al (2018) Neurocognitive Function in Children with Primary Hypertension after Initiation of Antihypertensive Therapy. J Pediatr. 195:85–94 e1

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyndsay A. Harshman.

Additional information

Answers 1. c, 2. d, 3. b, 4. d

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshman, L.A., Hooper, S.R. The brain in pediatric chronic kidney disease–the intersection of cognition, neuroimaging, and clinical biomarkers. Pediatr Nephrol 35, 2221–2229 (2020). https://doi.org/10.1007/s00467-019-04417-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04417-1

Keywords

Navigation