Skip to main content
Log in

Ambulatory blood pressure monitoring and neurocognitive function in children with primary hypertension

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Children with primary hypertension have been reported to have diminished scores in measures of cognition. However, little is known about the relative correlation between office and ambulatory blood pressure (BP) and neurocognitive test performance, and whether short-term BP variability is associated with decreased neurocognitive function. We sought to determine whether ambulatory BP monitoring (ABPM) was more strongly associated with neurocognitive test performance compared with office BP, and whether increased short-term BP variability was associated with lower neurocognitive scores.

Methods

Seventy-five subjects ages 10–18 years, with untreated primary hypertension, and 75 matched normotensive controls completed neurocognitive testing. All subjects had office BP and ABPM prior to neurocognitive testing.

Results

On multivariate analyses, there was no significant association between office BP and neurocognitive tests. However, several ABPM parameters were significantly associated with neurocognitive test scores in the lower quartile, in particular 24 h SBP load and wake systolic blood pressure (SBP) index [Rey Auditory Verbal learning Test (RAVLT) List A Trial 1, 24 h SBP load, odds ratio (OR) = 1.02, wake SBP index, OR = 1.06; List A Total, 24 h SBP load, OR = 1.02, wake SBP index, OR = 1.06; Short Delay Recall, wake SBP index, OR = 1.06; CogState Maze delayed recall, 24 h SBP load, OR = 1.03, wake SBP index, OR = 1.08; Grooved Pegboard, 24 h SBP load, OR = 1.02; all p < 0.05]. In contrast, short-term BP variability measures were not associated with neurocognitive test performance.

Conclusions

ABPM is superior to office BP in distinguishing hypertensive youth with lower neurocognitive test performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McNiece KL, Gupta-Malhotra M, Samuels J, Bell C, Garcia K, Poffenbarger T, Sorof JM, Portman RJ, National High Blood Pressure Education Program Working G (2007) Left ventricular hypertrophy in hypertensive adolescents: analysis of risk by 2004 National High Blood Pressure Education Program Working Group staging criteria. Hypertension 50:392–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kupferman JC, Paterno K, Mahgerefteh J, Pagala M, Golden M, Lytrivi ID, Ramaswamy P (2010) Improvement of left ventricular mass with antihypertensive therapy in children with hypertension. Pediatr Nephrol 25:1513–1518

    Article  PubMed  Google Scholar 

  3. Lande MB, Carson NL, Roy J, Meagher CC (2006) Effects of childhood primary hypertension on carotid intima media thickness: a matched controlled study. Hypertension 48:40–44

    Article  PubMed  CAS  Google Scholar 

  4. Stabouli S, Papakatsika S, Kotronis G, Papadopoulou-Legbelou K, Rizos Z, Kotsis V (2015) Arterial stiffness and SBP variability in children and adolescents. J Hypertens 33:88–95

    Article  PubMed  CAS  Google Scholar 

  5. Lande MB, Kaczorowski JM, Auinger P, Schwartz GJ, Weitzman M (2003) Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States. J Pediatr 143:720–724

    Article  PubMed  Google Scholar 

  6. Kupferman JC, Lande MB, Adams HR, Pavlakis SG (2013) Primary hypertension and neurocognitive and executive functioning in school-age children. Pediatr Nephrol 28:401–408

    Article  PubMed  Google Scholar 

  7. Lande MB, Batisky DL, Kupferman JC, Samuels J, Hooper SR, Falkner B, Waldstein SR, Szilagyi PG, Wang H, Staskiewicz J, Adams HR (2017) Neurocognitive function in children with primary hypertension. J Pediatr 180:148–155.e141

    Article  PubMed  Google Scholar 

  8. Stergiou GS, Alamara CV, Salgami EV, Vaindirlis IN, Dacou-Voutetakis C, Mountokalakis TD (2005) Reproducibility of home and ambulatory blood pressure in children and adolescents. Blood Press Monit 10:143–147

    Article  PubMed  Google Scholar 

  9. Macumber I (2017) Ambulatory blood pressure monitoring in children and adolescents: a review of recent literature and new guidelines. Curr Hypertens Rep 19:96

    Article  PubMed  Google Scholar 

  10. Richey PA, Disessa TG, Hastings MC, Somes GW, Alpert BS, Jones DP (2008) Ambulatory blood pressure and increased left ventricular mass in children at risk for hypertension. J Pediatr 152:343–348

    Article  PubMed  Google Scholar 

  11. Kollias A, Dafni M, Poulidakis E, Ntineri A, Stergiou GS (2014) Out-of-office blood pressure and target organ damage in children and adolescents: a systematic review and meta-analysis. J Hypertens 32:2315–2331 discussion 2331

    Article  PubMed  CAS  Google Scholar 

  12. Mancia G, Parati G (2000) Ambulatory blood pressure monitoring and organ damage. Hypertension 36:894–900

    Article  PubMed  CAS  Google Scholar 

  13. Parati G, Ochoa JE, Bilo G (2012) Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr Hypertens Rep 14:421–431

    Article  PubMed  Google Scholar 

  14. Parati G, Schumacher H (2014) Blood pressure variability over 24 h: prognostic implications and treatment perspectives. An assessment using the smoothness index with telmisartan-amlodipine monotherapy and combination. Hypertens Res 37:187–193

    Article  PubMed  CAS  Google Scholar 

  15. Yano Y, Ning H, Allen N, Reis JP, Launer LJ, Liu K, Yaffe K, Greenland P, Lloyd-Jones DM (2014) Long-term blood pressure variability throughout young adulthood and cognitive function in midlife: the coronary artery risk development in young adults (CARDIA) study. Hypertension 64:983–988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dore GA, Elias MF, Crichton GE, Robbins MA (2017) Age modifies the relation between intraindividual measurement-to-measurement variation in blood pressure and cognitive function: the Maine-Syracuse Study. J Hypertens :https://doi.org/10.1097/HJH.0000000000001510

  17. Lande MB, Adams HR, Kupferman JC, Hooper SR, Szilagyi PG, Batisky DL (2013) A multicenter study of neurocognition in children with hypertension: methods, challenges, and solutions. J Am Soc Hypertens 7:353–362

    Article  PubMed  PubMed Central  Google Scholar 

  18. Flynn JT, Daniels SR, Hayman LL, Maahs DM, BW MC, Mitsnefes M, Zachariah JP, Urbina EM, American Heart Association Atherosclerosis H, Obesity in Youth Committee of the Council on Cardiovascular Disease in the Y (2014) Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertension 63:1116–1135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bilo G, Giglio A, Styczkiewicz K, Caldara G, Maronati A, Kawecka-Jaszcz K, Mancia G, Parati G (2007) A new method for assessing 24-h blood pressure variability after excluding the contribution of nocturnal blood pressure fall. J Hypertens 25:2058–2066

    Article  PubMed  CAS  Google Scholar 

  20. Strauss E, Sherman E, Spreen O (2006) A compendium of neuropsychological tests: administration, norms, and commentary. Oxford University Press, New York

    Google Scholar 

  21. Pietrzak RHMP, Mayes LC, Roman SA, Sosa JA, Snyder PJ (2008) An examination of the construct validity and factor structure of the Groton maze learning test, a new measure of spatial working memory, learning efficiency, and error monitoring. Arch Clin Neuropsychol 23:433–445

    Article  PubMed  Google Scholar 

  22. Wechsler D (2004) Wechsler intelligence scale for children. The Psychological Corporation, San Antonio, TX

    Google Scholar 

  23. Yano Y, Ning H, Muntner P, Reis JP, Calhoun DA, Viera AJ, Levine DA, Jacobs DR Jr, Shimbo D, Liu K, Greenland P, Lloyd-Jones D (2015) Nocturnal blood pressure in young adults and cognitive function in midlife: the coronary artery risk development in young adults (CARDIA) study. Am J Hypertens 28:1240–1247

    Article  PubMed  PubMed Central  Google Scholar 

  24. Riba-Llena I, Nafria C, Filomena J, Tovar JL, Vinyoles E, Mundet X, Jarca CI, Vilar-Bergua A, Montaner J, Delgado P (2016) High daytime and nighttime ambulatory pulse pressure predict poor cognitive function and mild cognitive impairment in hypertensive individuals. J Cereb Blood Flow Metab 36:253–263

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lande MB, Mendley SR, Matheson MB, Shinnar S, Gerson AC, Samuels JA, Warady BA, Furth SL, Hooper SR (2016) Association of blood pressure variability and neurocognition in children with chronic kidney disease. Pediatr Nephrol 31:2137–2144

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ruebner RL, Laney N, Kim JY, Hartung EA, Hooper SR, Radcliffe J, Furth SL (2016) Neurocognitive dysfunction in children, adolescents, and young adults with CKD. Am J Kidney Dis 67:567–575

    Article  PubMed  Google Scholar 

  27. Kanemaru A, Kanemaru K, Kuwajima I (2001) The effects of short-term blood pressure variability and nighttime blood pressure levels on cognitive function. Hypertens Res 24:19–24

    Article  PubMed  CAS  Google Scholar 

  28. Yamaguchi Y, Wada M, Sato H, Nagasawa H, Koyama S, Takahashi Y, Kawanami T, Kato T (2014) Impact of ambulatory blood pressure variability on cerebral small vessel disease progression and cognitive decline in community-based elderly Japanese. Am J Hypertens 27:1257–1267

    Article  PubMed  CAS  Google Scholar 

  29. Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, McManus RJ (2016) Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. BMJ 354:i4098

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu D, Li C, Chen Y, Xiong H, Tian X, Wu W, Huang W, Zhang YT, Zhang H (2016) Influence of blood pressure variability on early carotid atherosclerosis in hypertension with and without diabetes. Medicine (Baltimore) 95:e3864

    Article  CAS  Google Scholar 

  31. McDonald C, Pearce MS, Kerr SR, Newton JL (2017) Blood pressure variability and cognitive decline in older people: a 5-year longitudinal study. J Hypertens 35:140–147

    Article  PubMed  CAS  Google Scholar 

  32. Imai Y, Aihara A, Ohkubo T, Nagai K, Tsuji I, Minami N, Satoh H, Hisamichi S (1997) Factors that affect blood pressure variability. A community-based study in Ohasama, Japan. Am J Hypertens 10:1281–1289

    Article  PubMed  CAS  Google Scholar 

  33. Flynn JT, Pierce CB, Miller ER III, Charleston J, Samuels JA, Kupferman J, Furth SL, Warady BA, Chronic Kidney Disease in Children Study G (2012) Reliability of resting blood pressure measurement and classification using an oscillometric device in children with chronic kidney disease. J Pediatr 160:434–440.e431

    Article  PubMed  Google Scholar 

  34. Hovi P, Vohr B, Ment LR, Doyle LW, McGarvey L, Morrison KM, Evensen KA, van der Pal S, Grunau RE, Collaboration AABPI, Brubakk AM, Andersson S, Saigal S, Kajantie E (2016) Blood pressure in young adults born at very low birth weight: adults born preterm international collaboration. Hypertension 68:880–887

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the National Heart, Lung, and Blood Institute (R01HL098332, MBL).

We thank the study coordinators at each participating center for all their work in keeping this study going, and the study participants and their parents.

Funding

This work was funded by a grant from the National Heart, Lung, and Blood Institute (R01HL098332, MBL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Kupferman.

Ethics declarations

The Institutional Review Board of each site approved the study. Parental permission was obtained, as well as subject assent.

Conflicts of interest

None.

Payments to write the manuscript

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupferman, J.C., Batisky, D.L., Samuels, J. et al. Ambulatory blood pressure monitoring and neurocognitive function in children with primary hypertension. Pediatr Nephrol 33, 1765–1771 (2018). https://doi.org/10.1007/s00467-018-3954-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-018-3954-y

Keywords

Navigation