Skip to main content
Log in

Mating worms and the cystic kidney: Caenorhabditis elegans as a model for renal disease

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Polycystic kidney disease (PKD) is caused by a group of variably inherited human disorders that are major causes of end-stage renal disease in both children and adults. The genetic culprits responsible for autosomal-dominant PKD (ADPKD), the polycystins, have been identified, yet still little is known about the molecular mechanisms that result in the disease phenotype. Polycystin homologs have been isolated in the model genetic organism Caenorhabditis elegans and, interestingly, play a specific role in C. elegans male mating behavior. Despite the recruitment of the polycystins for divergent functions in worms and humans it appears that the fundamental molecular and genetic interactions of these genes are evolutionarily conserved. In addition, studies in the worm have contributed to an understanding of the emerging role for cilia in the function of the polycystin pathway, expanding a promising frontier in PKD research. C. elegans has also been used to identify a gene family which may have significance for understanding the formation and maintenance of renal tubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hariharan IK, Haber DA (2003) Yeast, flies, worms, and fish in the study of human disease. N Engl J Med 348:2457–2463

    Article  PubMed  Google Scholar 

  2. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashburner M, Birney E, Boguski MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Goldstein LS, Gong F, Guan P, Harris NL, Hay BA, Hoskins RA, Li J, Li Z, Hynes RO, Jones SJ, Kuehl PM, Lemaitre B, Littleton JT, Morrison DK, Mungall C, O’Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang J, Zhao Q, Zheng XH, Lewis S (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  CAS  PubMed  Google Scholar 

  3. Jorgensen EM, Mango SE (2002) The art and design of genetic screens: Caenorhabditis elegans. Nat Rev Genet 3:356–369

    Article  CAS  PubMed  Google Scholar 

  4. Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350:151–164

    Article  CAS  PubMed  Google Scholar 

  5. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallao R, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269

    Article  PubMed  Google Scholar 

  6. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  Google Scholar 

  7. Lipton J, Kleemann G, Ghosh R, Lints R, Emmons SW (2004) Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J Neurosci 24:7427–7434

    Article  CAS  PubMed  Google Scholar 

  8. Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282:2028–2033

    CAS  PubMed  Google Scholar 

  9. Mori I (1999) Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annu Rev Genet 33:399–422

    Google Scholar 

  10. Driscoll M, Kaplan J (1997) Mechanotransduction. In: Riddle DL, Blumemthal T, Meyer BJ, Priess JR (ed) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 645–678

  11. Bono M de, Bargmann CI (1998) Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94:679–689

    Article  PubMed  Google Scholar 

  12. Emmons SW, Lipton J (2003) Genetic basis of male sexual behavior. J Neurobiol 54:93–110

    Article  CAS  PubMed  Google Scholar 

  13. Nelson FK, Riddle DL (1984) Functional study of the Caenorhabditis elegans secretory-excretory system using laser microsurgery. J Exp Zool 231:45–56

    CAS  PubMed  Google Scholar 

  14. White J (1988) The anatomy. In: Wood WB, Community of C. elegans Researchers (eds) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 81–122

  15. Kimble J, Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70:396–417

    Article  CAS  PubMed  Google Scholar 

  16. Sulston JE, Albertson DG, Thomson JN (1980) The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol 78:542–576

    Article  CAS  PubMed  Google Scholar 

  17. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  PubMed  Google Scholar 

  18. Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401:386–389

    Article  CAS  PubMed  Google Scholar 

  19. Liu KS, Sternberg PW (1995) Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron 14:79–89

    Article  CAS  PubMed  Google Scholar 

  20. Barr MM, DeModena J, Braun D, Nguyen CQ, Hall DH, Sternberg PW (2001) The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol 11:1341–1346

    Article  CAS  PubMed  Google Scholar 

  21. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183

    Article  CAS  PubMed  Google Scholar 

  22. Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci U S A 94:6965–6970

    Article  CAS  PubMed  Google Scholar 

  23. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  CAS  PubMed  Google Scholar 

  24. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380

    Article  CAS  PubMed  Google Scholar 

  25. Taulman PD, Haycraft CJ, Balkovetz DF, Yoder BK (2001) Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Mol Biol Cell 12:589–599

    CAS  PubMed  Google Scholar 

  26. Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13:2384–2398

    Article  CAS  PubMed  Google Scholar 

  27. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG (2002) PKD1 induces p21 (waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109:157–168

    Article  CAS  PubMed  Google Scholar 

  28. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and −2 produces unique cation-permeable currents. Nature 408:990–994

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A 98:1182–1187

    Article  CAS  PubMed  Google Scholar 

  30. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–187

    Article  CAS  PubMed  Google Scholar 

  31. Delmas P, Nomura H, Li X, Lakkis M, Luo Y, Segal Y, Fernandez-Fernandez JM, Harris P, Frischauf AM, Brown DA, Zhou J (2002) Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. J Biol Chem 277:11276–11283

    Article  CAS  PubMed  Google Scholar 

  32. Parnell SC, Magenheimer BS, Maser RL, Zien CA, Frischauf AM, Calvet JP (2002) Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by heterotrimeric G proteins. J Biol Chem 277:19566–19572

    Article  CAS  PubMed  Google Scholar 

  33. Yu H, Pretot RF, Burglin TR, Sternberg PW (2003) Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior. Development 130:5217–5227

    Article  CAS  PubMed  Google Scholar 

  34. Jacquemin P, Hwang JJ, Martial JA, Dolle P, Davidson I (1996) A novel family of developmentally regulated mammalian transcription factors containing the TEA/ATTS DNA binding domain. J Biol Chem 271:21775–21785

    Article  CAS  PubMed  Google Scholar 

  35. Culotti JG, Russell RL (1978) Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90:243–256

    CAS  PubMed  Google Scholar 

  36. Haycraft CJ, Swoboda P, Taulman PD, Thomas JH, Yoder BK (2001) The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 128:1493–1505

    CAS  PubMed  Google Scholar 

  37. Qin H, Rosenbaum JL, Barr MM (2001) An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr Biol 11:457–461

    Article  CAS  PubMed  Google Scholar 

  38. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825

    CAS  PubMed  Google Scholar 

  39. Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19:423–443

    Article  CAS  PubMed  Google Scholar 

  40. Perkins LA, Hedgecock EM, Thomson JN, Culotti JG (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 117:456–487

    Article  CAS  PubMed  Google Scholar 

  41. Swoboda P, Adler HT, Thomas JH (2000) The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol Cell 5:411–421

    Article  CAS  PubMed  Google Scholar 

  42. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  CAS  PubMed  Google Scholar 

  43. Woo DD, Miao SY, Pelayo JC, Woolf AS (1994) Taxol inhibits progression of congenital polycystic kidney disease. Nature 368:750–753

    Article  CAS  PubMed  Google Scholar 

  44. Zhang MZ, Mai W, Li C, Cho SY, Hao C, Moeckel G, Zhao R, Kim I, Wang J, Xiong H, Wang H, Sato Y, Wu Y, Nakanuma Y, Lilova M, Pei Y, Harris RC, Li S, Coffey RJ, Sun L, Wu D, Chen XZ, Breyer MD, Zhao ZJ, McKanna JA, Wu G (2004) PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc Natl Acad Sci U S A 101:2311–2316

    Article  CAS  PubMed  Google Scholar 

  45. Buechner M (2002) Tubes and the single C. elegans excretory cell. Trends Cell Biol 12:479–484

    Article  CAS  PubMed  Google Scholar 

  46. Buechner M, Hall DH, Bhatt H, Hedgecock EM (1999) Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell. Dev Biol 214:227–241

    Article  CAS  PubMed  Google Scholar 

  47. McKeown C, Praitis V, Austin J (1998) sma-1 encodes a betaH-spectrin homolog required for Caenorhabditis elegans morphogenesis. Development 125:2087–2098

    CAS  PubMed  Google Scholar 

  48. Berry KL, Bulow HE, Hall DH, Hobert O (2003) A C. elegans CLIC-like protein required for intracellular tube formation and maintenance. Science 302:2134–2137

    Article  CAS  PubMed  Google Scholar 

  49. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    CAS  PubMed  Google Scholar 

  50. Boletta A, Qian F, Onuchic LF, Bhunia AK, Phakdeekitcharoen B, Hanaoka K, Guggino W, Monaco L, Germino GG (2000) Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells. Mol Cell 6:1267–1273

    Article  CAS  PubMed  Google Scholar 

  51. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  52. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    CAS  PubMed  Google Scholar 

  53. Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC, Lewis RA, Green JS, Parfrey PS, Leroux MR, Davidson WS, Beales PL, Guay-Woodford LM, Yoder BK, Stormo GD, Katsanis N, Dutcher SK (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117:541–552

    Article  CAS  PubMed  Google Scholar 

  54. Tewari M, Hu PJ, Ahn JS, Ayivi-Guedehoussou N, Vidalain PO, Li S, Milstein S, Armstrong CM, Boxem M, Butler MD, Busiguina S, Rual JF, Ibarrola N, Chaklos ST, Bertin N, Vaglio P, Edgley ML, King KV, Albert PS, Vandenhaute J, Pandey A, Riddle DL, Ruvkun G, Vidal M (2004) Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network. Mol Cell 13:469–482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am indebted to Drs. Frederick Kaskel, Gabriel Haddad, Alex Lesokhin, William Gomes, and Galina Kofman for critically reading and reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Lipton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipton, J. Mating worms and the cystic kidney: Caenorhabditis elegans as a model for renal disease. Pediatr Nephrol 20, 1531–1536 (2005). https://doi.org/10.1007/s00467-005-1958-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-005-1958-x

Keywords

Navigation