Skip to main content
Log in

Three phase flow dynamics in tumor growth

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Existing tumor models generally consider only a single pressure for all the cell phases. Here, a three-fluid model originally proposed by the authors is further developed to allow for different pressures in the host cells (HC), the tumor cells (TC) and the interstitial fluid (IF) phases. Unlike traditional mixture theory models, this model developed within the thermodynamically constrained averaging theory contains all the necessary interfaces. Appropriate constitutive relationships for the pressure difference among the three fluid phases are introduced with respect to their relative wettability and fluid–fluid interfacial tensions, resulting in a more realistic modeling of cell adhesion and invasion. Five different tumor cases are studied by changing the interfacial tension between the three liquid phases, adhesion and dynamic viscosity. Since these parameters govern the relative velocities of the fluid phases and the adhesion of the phases to the extracellular matrix significant changes in tumor growth are observed. High interfacial tensions at the TC–IF and TC–HC interface support the lateral displacement of the healthy tissue in favor of a rapid growth of the malignant mass, with a relevant amount of HC which cannot be pushed out by TC and remain in place. On the other hand, lower TC–IF and TC–HC interfacial tensions tend to originate a more compact and dense tumor mass with a slower growth rate of the overall size. This novel computational model emphasizes the importance of characterizing the TC–HC interfacial properties to properly predict the temporal and spatial pattern evolution of tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

REV:

Representative elementary volume

TCAT:

Thermodynamically constrained averaging theory

\(\mathbf{A}^{\alpha }\) :

Fourth order tensor that accounts for the stress-rate of strain relationship

\(a\) :

Coefficient of the pressure–saturations relationship

\(a_{\alpha }\) :

Adhesion of the phase \(\alpha \)

\(b\) :

Coefficient of the pressure–saturations relationship

\(\hbox {C}_{ij}\) :

Nonlinear coefficient of the discretized capacity matrix

\(\mathbf{d}^{\overline{\overline{\alpha }}}\) :

Rate of strain tensor

\(D_{eff}^{\overline{il}}\) :

Diffusion coefficient for the species \(i\) in the phase \(l\)

\(D_{0}^{\overline{il}}\) :

Effective diffusion coefficient for the species \(i\) in the extracellular space

\(\mathbf{D}_s\) :

Tangent matrix of the solid skeleton

\(\mathbf{e}^{s}\) :

Total strain tensor

\(\mathbf{e}_{el}^s\) :

Elastic strain tensor

\(\mathbf{e}_{vp}^s\) :

Visco-plastic strain tensor

\(\mathbf{e}_{sw}^s\) :

Swelling strain tensor

\(\mathbf{f}_v\) :

Discretized source term associated with the primary variable \(v\)

\(H\) :

Heaviside function

\(\mathbf{K}_{ij}\) :

Non-linear coefficient of the discretized conduction matrix

\(\mathbf{k}\) :

Intrinsic permeability tensor

\(k_{rel}^\alpha \) :

Relative permeability of phase \(\upalpha \)

\(\mathbf{N}_v\) :

Vector of shape functions related to the primary variable \(v\)

\(p^{\alpha }\) :

Pressure in phase \(\upalpha \)

\(\mathbf{R}^{\alpha }\) :

Resistance tensor

\(S^{\alpha }\) :

Saturation degree of phase \(\upalpha \)

\(\mathbf{t}_{eff}^{\overline{\overline{s}}}\) :

Effective stress tensor of solid phase s

\(\mathbf{t}_{tot}^{\overline{\overline{s}}}\) :

Total stress tensor of solid phase s

\(\mathbf{u}^{s}\) :

Displacement vector of solid phase s

\(\mathbf{x}\) :

Solution vector

\(\bar{{\alpha }}\) :

Biot’s coefficient

\(\gamma _{growth}^{t}\) :

Growth coefficient

\(\gamma _{necrosis}^t\) :

Necrosis coefficient

\(\gamma _{growth}^{\overline{nl}}\) :

Nutrient consumption coefficient related to growth

\(\gamma _{0}^{\overline{nl}}\) :

Nutrient consumption coefficient not related to growth

\(\theta ^{\overline{\overline{\alpha }}}\) :

Macroscale temperature of phase \(\upalpha \)

\(\delta \) :

Exponent in the effective diffusion function for oxygen

\(\varepsilon \) :

Porosity

\(\varepsilon ^{\alpha }\) :

Volume fraction of phase \(\upalpha \)

\(\mu ^{\alpha }\) :

Dynamic viscosity of phase \(\upalpha \)

\(\rho ^{\alpha }\) :

Density of phase \(\upalpha \)

\(\sigma _{\alpha \beta }\) :

Interfacial tension between phases \(\alpha \) and \(\beta \)

\(\varsigma ^{\overline{\alpha }}\) :

Chemical potential

\(\psi ^{\overline{\alpha }}\) :

Gravitational potential

\(\chi ^{\alpha }\) :

Solid surface fraction in contact with phase \(\upalpha \)

\(\omega ^{N\overline{t}}\) :

Mass fraction of necrotic cells in the tumor cells phase

\(\omega ^{\overline{nl}}\) :

Nutrient mass fraction in the phase \(l\)

\(\omega _{crit}^{\overline{nl}}\) :

Critical nutrient mass fraction for growth

\(\omega _{env}^{\overline{nl}}\) :

Reference nutrient mass fraction in the environment

\(\mathop {M}\limits ^{\kappa \rightarrow \alpha }\) :

Inter-phase mass transfer from \(k\) to \(\alpha \) phase

\(\varepsilon ^{\alpha }r^{i\alpha }\) :

Reaction term i.e. intra-phase mass transformation

\(\mathop {\mathbf{T}}\limits ^{\kappa \rightarrow \alpha }\) :

Inter-phase momentum transfer from \(k\) to \(\alpha \) phase

crit:

Critical value for growth

\(h\) :

Host cell phase (healthy cells of the host issue)

\(l\) :

Interstitial fluid

\(n\) :

Nutrient

\(s\) :

Solid

\(t\) :

Tumor cell phase

\(\upalpha \) :

Phase indicator with \(\alpha = h,\, l,\, s\), or \(t\)

References

  1. Amack JD, Manning ML (2012) Knowing the boundaries: extending the differential adhesion hypothesis in embryonic cell sorting. Science 338(6104):212–215

    Article  Google Scholar 

  2. Ambrosi D, Preziosi L, Vitale G (2012) The interplay between stress and growth in solid tumors. Mech Res Commun 42:87–91

    Article  Google Scholar 

  3. Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Bréchet YJM, Fratzl P, Dunlop JWC (2012) How linear tension converts to curvature: geometric control of bone tissue growth. PLoS ONE 7(5):e36336. doi:10.1371/journal.pone.0036336

  4. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrol Pap 3, Colorado State University, Fort Collins

  5. Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. J Irrigation Drainage Div Am Soc Civ Eng 92(IR2):61–88

    Google Scholar 

  6. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system: I. Interfacial free energy. J Chem Phys 28:256–267

    Article  Google Scholar 

  7. Corey AT, Rathjens CH, Henderson JH, Wyllie MRJ (1956) Three-phase relative permeability. Trans AIME 207:349–351

    Google Scholar 

  8. Deisboeck TS, Wang Z, Macklin P, Cristini V (2011) Multiscale cancer modeling. Annu Rev Biomed Eng 13:127–155

    Article  Google Scholar 

  9. Dunlop JW, Gamsjäger E, Bidan C, Kommareddy KP, Kollmansberger P, Rumpler M, Fischer FD, Fratzl P (2011) The modeling of tissue growth in confined geometries, effect of surface tension. In: Proceedings of CMM-2011 (Warsaw) computer methods in mechanics

  10. Gonzalez-Rodriguez D, Guevorkian K, Douezan S, Françoise Brochard-Wyart F (2012) Soft matter models of developing tissues and tumors. Science 338:910–917

    Article  Google Scholar 

  11. Gray WG, Miller CT (2005) Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview. Adv Water Resour 28:161–180

    Article  Google Scholar 

  12. Gray WG, Miller CT (2009) Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 5. Single-fluid-phase transport. Adv Water Resour 32:681–711

    Article  Google Scholar 

  13. Gray WG, Schrefler BA (2007) Analysis of the solid stress tensor in multiphase porous media. Int J Num Anal Methods Geomech 31:541–581

    Article  MATH  Google Scholar 

  14. Hawkins-Daarud A, van der Zee KG, Oden JT (2012) Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int J Numer Methods Biomed Eng 28:3–24

    Article  MATH  MathSciNet  Google Scholar 

  15. Hughes TJR, Franca LP, Mallet (1987) A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 63:97–112

    Article  MATH  MathSciNet  Google Scholar 

  16. Jackson AS, Miller CT, Gray WG (2009) Thermodynamically constrained averaging theory approach for modelling flow and transport phenomena in porous medium systems: 6. Two-fluid-phase flow. Adv Water Resour 32:779–795

    Article  Google Scholar 

  17. Johnson GC, Bamman DJ (1984) A discussion of stress rates in finite deformation problems. Int J Solids Struct 8:725–737

    Article  Google Scholar 

  18. Leverett MC, Lewis WB, True ME (1942) Dimensional-model studies of oil-field behavior. Pet. Technol. Tech. Paper 1413, January: 175–193

    Google Scholar 

  19. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, Chichester

    MATH  Google Scholar 

  20. Lowengrub JS, Frieboes HB, Jin F, Chuang Y-L, Li X, Macklin P, Wise SM, Cristini V (2010) Nonlinear modeling of cancer: bridging the gap between cells and tumors. Nonlinearity 23(1):R1–R9. doi:10.1088/0951-7715/23/1/R01

    Article  MATH  MathSciNet  Google Scholar 

  21. Molina JR, Hayashi Y, Stephens C, Georgescu M-M (2010) Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 12(6):453–463

    Google Scholar 

  22. Murthy V, Valliappan S, Khalili-Naghadeh N (1989) Time step constraints in finite element analysis of the Poisson type equation. Comput Struct 31:269–273

    Article  Google Scholar 

  23. Parker JC, Lenhard RJ (1987) A model for hysteretic constitutive relations governing multiphase flow. 1. Saturation-pressure relations. Water Resour Res 23:2187–2196

    Article  Google Scholar 

  24. Parker JC, Lenhard RJ (1990) Determining three-phase permeability saturation-pressure relations from two-phase measurements. J Petroleum Sci Eng 4:57–65

    Article  Google Scholar 

  25. Preisig M, Prévost JH (2011) Stabilization procedures in coupled poromechanics problems: a critical assessment. Int J Numer Anal Methods Geomech 35(11):1207–1225

    Article  Google Scholar 

  26. Preziosi L, Vitale G (2011) A multiphase model of tumour and tissue growth including cell adhesion and plastic re-organisation. Math Models Methods Appl Sci 21(9):1901–1932

    Article  MATH  MathSciNet  Google Scholar 

  27. Rank E, Katz C, Werner H (1983) On the importance of the discrete maximum principle in transient analysis using finite element methods. Int J Num Meth Eng 19:1771–1782

    Article  MATH  MathSciNet  Google Scholar 

  28. Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular tumor growth. SIAM Rev 49(2):179–208

    Article  MATH  MathSciNet  Google Scholar 

  29. Salomoni V, Schrefler BA (2005) A CBS-type stabilizing algorithm for the consolidation of saturated porous media. Int J Numer Methods Eng 63:502–527

    Article  MATH  Google Scholar 

  30. Schrefler BA, Zhan XY, Simoni L (1995) A coupled model for water flow, airflow and heat flow in deformable porous media. Int J Heat Fluid Flow 5:531–547

    Article  MATH  Google Scholar 

  31. Sciumè G, Gray WG, Ferrari M, Decuzzi P, Schrefler BA (2013) On computational modeling in tumor growth. Arch Comput Methods Eng. doi:10.1007/s11831-013-9090-8

  32. Sciumè G, Shelton SE, Gray WG, Miller CT, Hussain F, Ferrari M, Decuzzi P, Schrefler BA (2013) A multiphase model for three dimensional tumor growth. New J Phys 15: 15005. doi:10.1088/1367-2630/15/1/015005

  33. Sciumè G, Shelton SE, Gray WG, Miller CT, Hussain F, Ferrari M, Decuzzi P, Schrefler BA (2012) Tumor growth modeling from the perspective of multiphase porous media mechanics. Mol Cell Biomech 9(3):193–212

    Google Scholar 

  34. Turska E, Wisniewski K, Schrefler BA (1994) Error propagation of staggered solution procedures for transient problems. Comput Methods Appl Mech Eng 144:177–188

    Google Scholar 

  35. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  36. Wise SM, Lowengrub JS, Frieboes HB, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth model and numerical method. J Theor Biol 253:524–543

    Article  MathSciNet  Google Scholar 

  37. Zavarise G, Wrigger P, Schrefler BA (1995) On augmented Lagrangian algorithms for thermomechanical contact problems with friction. Int J Num Methods Eng 38:2929–2949

    Article  MATH  Google Scholar 

  38. Zienkiewicz OC, Taylor RL (2000) The finite element method. Solid mechanics, vol 2. Butterworth Heinemann, Oxford

    Google Scholar 

Download references

Acknowledgments

GS and BS acknowledge partial support from the Strategic Research Project “Algorithms and Architectures for Computational Science and Engineering”—AACSE (STPD08JA32—2008) of the University of Padova (Italy) and the partial support of Università Italo Francese within the Vinci Program. WGG acknowledges partial support from the U.S. National Science Foundation Grant ATM-0941235 and the U.S. Department of Energy Grant DE-SC0002163. PD and MF acknowledge partial support from the NIH/NCI grants U54CA143837 and U54CA151668. MF acknowledges the Ernest Cockrell Jr. Distinguished Endowed Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Schrefler.

Appendices

Appendix A: General forms of mass and momentum balance equations

The mass balance equation for any phase \(\alpha \) using averaging theorems is

$$\begin{aligned} \frac{\partial \left( {\varepsilon ^{\alpha }\rho ^{\alpha }} \right) }{\partial t}+\nabla \cdot \left( {\varepsilon ^{\alpha }\rho ^{\alpha }\mathbf{v}^{\overline{\alpha }}} \right) -\sum _{\kappa \in \mathfrak {I}_{c\alpha } } {\mathop {M}\limits ^{\kappa \rightarrow \alpha }} =0 \end{aligned}$$
(32)

where \(\varepsilon ^{\alpha }\) is the volume fraction; \(\rho ^{\alpha }\) is the density, \(\mathbf{v}^{\overline{\alpha }}\) is the local velocity vector,\(\mathop {M}\limits ^{\kappa \rightarrow \alpha }\) are the mass exchange terms accounting for transport of mass at the interface between the phases \(\kappa \) and \(\alpha \), and \(\sum _{\kappa \in \mathfrak {I}_{c\alpha }}\) is the summation over all the phases exchanging mass at the interfaces with the phase \(\alpha \). However, if the interface is treated as massless, the transfer is to the adjacent phases, designated as \(\kappa \).

Any species \(i\) dispersed within the phase \(\alpha \) has to satisfy mass conservation too, and therefore the following equation is derived by averaging

$$\begin{aligned}&\frac{\partial \left( {\varepsilon ^{\alpha }\rho ^{\alpha }\omega ^{\overline{i\alpha } }} \right) }{\partial t}+\nabla \cdot \left( {\varepsilon ^{\alpha }\rho ^{\alpha }\omega ^{\overline{i\alpha } }\mathbf{v}^{\overline{\alpha }}} \right) \nonumber \\&\quad +\nabla \cdot \left( {\varepsilon ^{\alpha }\rho ^{\alpha }\omega ^{\overline{i\alpha } }\mathbf{u}^{\overline{\overline{i\alpha }} }} \right) -\varepsilon ^{\alpha }r^{i\alpha }+\sum _\kappa {\mathop {M}\limits ^{i\alpha \rightarrow i\kappa } } =0 \end{aligned}$$
(33)

where \(\omega ^{\overline{i\alpha }}\) identifies the mass fraction of the species \(i\) dispersed with the phase \(\alpha \), \(\varepsilon ^{\alpha }r^{i\alpha }\) is a reaction term that takes into account the reactions between the species \(i\) and the other chemical species dispersed in phase \(\alpha \), and \(\mathbf{u}^{\overline{\overline{i\alpha }}}\) is the diffusive velocity of species \(i\).

The momentum equation for the phase \(\alpha \), including multiple species \(i\), is

$$\begin{aligned}&\frac{\partial \left( {\varepsilon ^{\alpha }\rho ^{\alpha }\mathbf{v}^{\overline{\alpha }}} \right) }{\partial t}+\nabla \cdot \left( {\varepsilon ^{\alpha }\rho ^{\alpha }\mathbf{v}^{\overline{\alpha }}\mathbf{v}^{\overline{\alpha }}} \right) -\nabla \cdot \left( {\varepsilon ^{\alpha }\mathbf{t}^{\overline{\overline{\alpha }} }} \right) \nonumber \\&\quad -\varepsilon ^{\alpha }\rho ^{\alpha }\mathbf{g}^{\overline{\alpha } }-\sum _{\kappa \in \mathfrak {I}_{c\alpha } } {\left( {\sum _{i\in \mathfrak {I}_s} {\mathop {M_{v}}\limits ^{i\kappa \rightarrow i\alpha } \mathbf{v}^{\overline{\alpha }}} +\mathop {\mathbf{T}}\limits ^{\kappa \rightarrow \alpha } } \right) } =0 \end{aligned}$$
(34)

where \(\mathbf{g}^{\overline{\alpha }}\) is the body force, \(\mathop {M_v}\limits ^{i\kappa \rightarrow i\alpha } \mathbf{v}^{\overline{\alpha }}\) represents the momentum exchange from the phase \(\kappa \) to the phase \(\alpha \) due to mass exchange of species \(i,\, \mathbf{t}^{\overline{\overline{\alpha }}}\) is the stress tensor and \(\mathop {\mathbf{T}}\limits ^{\kappa \rightarrow \alpha }\) is the interaction force between phase \(\alpha \) and the adjacent interfaces. Given the characteristic times scales (hours and days) of the problem and the small difference in density between cells and aqueous solutions, inertial forces as well as the force due to mass exchange are neglected so that the momentum equation simplifies to

$$\begin{aligned} -\nabla \cdot \left( {\varepsilon ^{\alpha }\mathbf{t}^{\overline{\overline{\alpha }} }} \right) -\varepsilon ^{\alpha }\rho ^{\alpha }\mathbf{g}^{\overline{\alpha }}-\sum _{\kappa \in \mathfrak {I}_{c\alpha }} {\mathop {\mathbf{T}}\limits ^{\kappa \rightarrow \alpha }} =0 \end{aligned}$$
(35)

From TCAT [32] it can be shown that the stress tensor for a fluid phase is of the form \(\mathbf{t}^{\overline{\overline{\alpha }} }=-p^{\alpha }\mathbf{1}\), with \(p^{\alpha }\) being the averaged fluid pressure and 1 the unit tensor, and that the momentum balance equation can be simplified to

$$\begin{aligned} \varepsilon ^{\alpha }\nabla p^{\alpha }+\mathbf{R}^{\alpha }\cdot (\mathbf{v}^{\overline{\alpha }}-\mathbf{v}^{\overline{s}})=0 \end{aligned}$$
(36)

where \(\mathbf{R}^{\upalpha }\) is the resistance tensor.

The form of \(\left( {\mathbf{R}^{\alpha }} \right) ^{-1}\) follows the modeling of multiphase flow in porous media [19, 30]; that is to say

$$\begin{aligned} \left( {\mathbf{R}^{\alpha }} \right) ^{-1}=\frac{k_{rel}^\alpha \mathbf{k}}{\mu ^{\alpha }\left( {\varepsilon ^{\alpha }} \right) ^{2}}\qquad \qquad \left( {\alpha =h,t,l} \right) \end{aligned}$$
(37)

where \(\mathbf{k}\) and \(\mu ^{\alpha }\) are the intrinsic permeability tensor of the ECM and the dynamic viscosity of the of phase \(\alpha \), respectively, and \(k_{rel}^\alpha \) is the relative permeability.

By introducing (37) in (36), the relative velocity of phase \(\alpha \) is given by

$$\begin{aligned} \mathbf{v}^{\overline{\alpha }}-\mathbf{v}^{\overline{s} }=-\frac{k_{rel}^\alpha \mathbf{k}}{\mu ^{\alpha }\varepsilon ^{\alpha }}\cdot \nabla p^{\alpha }\qquad \qquad \left( {\alpha =h,t,l} \right) \end{aligned}$$
(38)

Appendix B: Coefficients of the matrices appearing in equation (30)

In the following equations \(K^{\mathrm{s}}\) is the Bulk modulus of the solid skeleton and

$$\begin{aligned} \frac{\partial \mathbf{e}_{sw}^s }{\partial t}=\frac{\mathbf{1}}{3K^{s}}\frac{\partial p^{s}}{\partial t}. \end{aligned}$$
$$\begin{aligned}&\mathbf{C}_{nn} =\int \limits _\Omega {\mathbf{N}_n^T \left( {\varepsilon S^{l}\mathbf{N}_n} \right) } d\Omega \end{aligned}$$
(39)
$$\begin{aligned}&\mathbf{C}_{tt} =\int \limits _\Omega {\mathbf{N}_t^T \left[ {\varepsilon \mathbf{N}_t^ +\frac{S^{t}}{K^{s}}\left( {S^{t}\frac{\partial p^{t}}{\partial S^{t}}+S^{h}\frac{\partial p^{h}}{\partial S^{t}}+p^{t}-p^{l}} \right) \mathbf{N}_{t}} \right] } d\Omega \nonumber \\\end{aligned}$$
(40)
$$\begin{aligned}&\mathbf{C}_{th} =\int \limits _\Omega {\mathbf{N}_t^T \left[ {\frac{S^{t}}{K^{s}}\left( {S^{t}\frac{\partial p^{t}}{\partial S^{h}}+S^{h}\frac{\partial p^{h}}{\partial S^{h}}+p^{h}-p^{l}} \right) \mathbf{N}_h} \right] } d\Omega \end{aligned}$$
(41)
$$\begin{aligned}&\mathbf{C}_{tl} =\int \limits _\Omega {\mathbf{N}_t^T \left[ {\frac{S^{t}}{K^{s}}\left( {S^{t}\frac{\partial p^{t}}{\partial p^{l}}+S^{h}\frac{\partial p^{h}}{\partial p^{l}}+S^{l}} \right) \mathbf{N}_l} \right] } d\Omega \end{aligned}$$
(42)
$$\begin{aligned}&\mathbf{C}_{ht} =\int \limits _\Omega {\mathbf{N}_h^T \left[ {\frac{S^{h}}{K^{s}}\left( {S^{t}\frac{\partial p^{t}}{\partial S^{t}}+S^{h}\frac{\partial p^{h}}{\partial S^{t}}+p^{t}-p^{l}} \right) \mathbf{N}_t} \right] } d\Omega \end{aligned}$$
(43)
$$\begin{aligned}&\mathbf{C}_{hh} =\int \limits _\Omega \mathbf{N}_h^T \left[ \varepsilon \mathbf{N}_h^ +\frac{S^{h}}{K^{s}}\left( S^{t}\frac{\partial p^{t}}{\partial S^{h}}+S^{h}\frac{\partial p^{h}}{\partial S^{h}}+p^{h}-p^{l} \right) \mathbf{N}_{h} \right] d\Omega \nonumber \\ \end{aligned}$$
(44)
$$\begin{aligned}&\mathbf{C}_{hl} =\int \limits _\Omega {\mathbf{N}_h^T \left[ {\frac{S^{h}}{K^{s}}\left( {S^{t}\frac{\partial p^{t}}{\partial p^{l}}+S^{h}\frac{\partial p^{h}}{\partial p^{l}}+S^{l}} \right) \mathbf{N}_l} \right] } d\Omega \end{aligned}$$
(45)
$$\begin{aligned}&\mathbf{C}_{lt} =\int \limits _\Omega {\mathbf{N}_l^T \left[ {\frac{1}{K^{s}}\left( {S^{t}\frac{\partial p^{t}}{\partial S^{t}}+S^{h}\frac{\partial p^{h}}{\partial S^{t}}+p^{t}-p^{l}} \right) \mathbf{N}_t} \right] } d\Omega \end{aligned}$$
(46)
$$\begin{aligned}&\mathbf{C}_{lh} =\int \limits _\Omega {\mathbf{N}_l^T \left[ {\frac{1}{K^{s}}\left( {S^{t}\frac{\partial p^{t}}{\partial S^{h}}+S^{h}\frac{\partial p^{h}}{\partial S^{h}}+p^{h}-p^{l}} \right) \mathbf{N}_h} \right] } d\Omega \end{aligned}$$
(47)
$$\begin{aligned}&\mathbf{C}_{ll} =\int \limits _\Omega {\mathbf{N}_l^T \left[ {\frac{1}{K^{s}}\left( {S^{t}\frac{\partial p^{t}}{\partial p^{l}}+S^{h}\frac{\partial p^{h}}{\partial p^{l}}+S^{l}} \right) \mathbf{N}_l} \right] } d\Omega \end{aligned}$$
(48)
$$\begin{aligned}&\left( {\mathbf{C}_{uu} } \right) _{ij} =-\int \limits _\Omega {\mathbf{B}^{\mathrm{T}}\mathbf{D}_s \mathbf{B}} d\Omega \end{aligned}$$
(49)
$$\begin{aligned}&\mathbf{K}_{nn} =\int \limits _\Omega {\left( {\nabla \mathbf{N}_n } \right) ^\mathrm{T}\left( {\varepsilon S^{l}D_{eff}^{\overline{nl} } \nabla \mathbf{N}_n } \right) d\Omega } \end{aligned}$$
(50)
$$\begin{aligned}&\mathbf{K}_{tt} =\int \limits _\Omega {\left( {\nabla \mathbf{N}_t } \right) ^{\mathrm{T}}\left( {\frac{k_{rel}^t \mathbf{k}^{ts}}{\mu ^{t}}\frac{\partial p^{t}}{\partial S^{t}}\nabla \mathbf{N}_t } \right) d\Omega } \end{aligned}$$
(51)
$$\begin{aligned}&\mathbf{K}_{th} =\int \limits _\Omega {\left( {\nabla \mathbf{N}_t } \right) ^{\mathrm{T}}\left( {\frac{k_{rel}^t \mathbf{k}^{ts}}{\mu ^{t}}\frac{\partial p^{t}}{\partial S^{h}}\nabla \mathbf{N}_h } \right) d\Omega } \end{aligned}$$
(52)
$$\begin{aligned}&\mathbf{K}_{tl} =\int \limits _\Omega {\left( {\nabla \mathbf{N}_t } \right) ^{\mathrm{T}}\left( {\frac{k_{rel}^t \mathbf{k}^{ts}}{\mu ^{t}}\frac{\partial p^{t}}{\partial p^{l}}\nabla \mathbf{N}_l } \right) d\Omega } \end{aligned}$$
(53)
$$\begin{aligned}&\mathbf{K}_{ht} =\int \limits _\Omega {\left( {\nabla \mathbf{N}_h } \right) ^{\mathrm{T}}\left( {\frac{k_{rel}^h \mathbf{k}^{hs}}{\mu ^{h}}\frac{\partial p^{h}}{\partial S^{t}}\nabla \mathbf{N}_t } \right) d\Omega } \end{aligned}$$
(54)
$$\begin{aligned}&\mathbf{K}_{hh} =\int \limits _\Omega {\left( {\nabla \mathbf{N}_h } \right) ^{\mathrm{T}}\left( {\frac{k_{rel}^h \mathbf{k}^{hs}}{\mu ^{h}}\frac{\partial p^{h}}{\partial S^{h}}\nabla \mathbf{N}_h } \right) d\Omega } \end{aligned}$$
(55)
$$\begin{aligned}&\mathbf{K}_{hl} =\int \limits _\Omega {\left( {\nabla \mathbf{N}_h } \right) ^{\mathrm{T}}\left( {\frac{k_{rel}^h \mathbf{k}^{hs}}{\mu ^{h}}\frac{\partial p^{h}}{\partial p^{l}}\nabla \mathbf{N}_l } \right) d\Omega } \end{aligned}$$
(56)
$$\begin{aligned}&\mathbf{K}_{lt} =\int \limits _\Omega {\left( {\nabla \mathbf{N}_l } \right) ^{\mathrm{T}}\left( {\frac{k_{rel}^t \mathbf{k}^{ts}}{\mu ^{t}}\frac{\partial p^{t}}{\partial S^{t}}\nabla \mathbf{N}_t +\frac{k_{rel}^h \mathbf{k}^{hs}}{\mu ^{h}}\frac{\partial p^{h}}{\partial S^{t}}\nabla \mathbf{N}_t } \right) d\Omega } \nonumber \\\end{aligned}$$
(57)
$$\begin{aligned}&\mathbf{K}_{lh} =\int \limits _\Omega {\left( {\nabla \mathbf{N}_l } \right) ^{\mathrm{T}}\left( {\frac{k_{rel}^t \mathbf{k}^{ts}}{\mu ^{t}}\frac{\partial p^{t}}{\partial S^{h}}\nabla \mathbf{N}_h +\frac{k_{rel}^h \mathbf{k}^{hs}}{\mu ^{h}}\frac{\partial p^{h}}{\partial S^{h}}\nabla \mathbf{N}_h } \right) d\Omega } \nonumber \\\end{aligned}$$
(58)
$$\begin{aligned}&\mathbf{K}_{ll} =\int \limits _\Omega \left( {\nabla \mathbf{N}_l } \right) ^{\mathrm{T}}\left( \frac{k_{rel}^t \mathbf{k}^{ts}}{\mu ^{t}}\frac{\partial p^{t}}{\partial p^{l}}\nabla \mathbf{N}_l +\frac{k_{rel}^h \mathbf{k}^{hs}}{\mu ^{h}}\frac{\partial p^{h}}{\partial p^{l}}\nabla \mathbf{N}_{l}\right. \nonumber \\&\qquad \quad \!\left. +\frac{k_{rel}^l \mathbf{k}^{ls}}{\mu ^{l}}\nabla \mathbf{N}_{l} \right) d\Omega \end{aligned}$$
(59)
$$\begin{aligned}&\mathbf{f}_n =\int \limits _\Omega {\mathbf{N}_n^{T} \left( {\frac{1}{\rho }\left( {\omega ^{\overline{nl} }\mathop {M}\limits ^{l\rightarrow t} -\mathop {M}\limits ^{nl\rightarrow t} } \right) -\varepsilon S^{l}\mathbf{v}^{\overline{l} }\cdot \nabla \omega ^{\overline{nl} }} \right) } d\Omega \end{aligned}$$
(60)
$$\begin{aligned}&\mathbf{f}_t =\int \limits _\Omega \mathbf{N}_t^T \left[ \frac{1}{\rho }\mathop {M}\limits _{growth}^{l\rightarrow t} -S^{t}\mathrm{tr}\left( {\frac{\partial \mathbf{e}^{s}}{\partial t}-\frac{\partial \mathbf{e}_{sw}^s }{\partial t}} \right) \right. \nonumber \\&\left. \qquad \quad \!-\nabla \left( {S^{t}} \right) \cdot \left( {\varepsilon \frac{\partial \mathbf{u}^{s}}{\partial t}} \right) \right] d\Omega \end{aligned}$$
(61)
$$\begin{aligned}&\mathbf{f}_h =\int \limits _\Omega {\mathbf{N}_h^T \left[ {-S^{h}\mathrm{tr}\left( {\frac{\partial \mathbf{e}^{s}}{\partial t}-\frac{\partial \mathbf{e}_{sw}^s }{\partial t}} \right) -\nabla \left( {S^{h}} \right) \cdot \left( {\varepsilon \frac{\partial \mathbf{u}^{s}}{\partial t}} \right) } \right] } d\Omega \nonumber \\\end{aligned}$$
(62)
$$\begin{aligned}&\mathbf{f}_l =\int \limits _\Omega {\mathbf{N}_l^T \left[ {-\mathrm{tr}\left( {\frac{\partial \mathbf{e}^{s}}{\partial t}-\frac{\partial \mathbf{e}_{sw}^s }{\partial t}} \right) } \right] } d\Omega \end{aligned}$$
(63)
$$\begin{aligned}&\mathbf{f}_u =\int \limits _\Omega {\mathbf{B}^{T}\left( {\mathbf{D}_s \frac{\partial \mathbf{e}_{vp}^s }{\partial t}} \right) } d\Omega +\int \limits _\Omega {\mathbf{B}^{T}\left( {\mathbf{D}_s \frac{\partial \mathbf{e}_{sw}^s }{\partial t}} \right) } d\Omega \end{aligned}$$
(64)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciumè, G., Gray, W.G., Hussain, F. et al. Three phase flow dynamics in tumor growth. Comput Mech 53, 465–484 (2014). https://doi.org/10.1007/s00466-013-0956-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0956-2

Keywords

Navigation