Skip to main content
Log in

Discretized peridynamics for linear elastic solids

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Peridynamics is a theory of continuum mechanics employing a nonlocal model that can simulate fractures and discontinuities (Askari et al. J Phys 125:012–078, 2008; Silling J Mech Phys Solids 48(1):175–209, 2000). It reformulates continuum mechanics in forms of integral equations rather than partial differential equations to calculate the force on a material point. A connection between bond forces and the stress in the classical (local) theory is established for the calculation of peridynamic stress, which is calculated by summing up bond forces passing through or ending at the cross section of a node. The peridynamic stress and the constitutive law in elasticity are used for the derivation of one- and three-dimensional numerical micromoduli. For three-dimensional discretized peridynamics, the numerical micromodulus is larger than the analytical micromodulus, and converges to the analytical value as the horizon to grid spacing ratio increases. A comparison of material responses in a three-dimensional discretized peridynamic model using numerical and analytical micromoduli, respectively, is performed for different horizons. As the horizon increases, the boundary effect is more conspicuous, and the errors increase in the back-calculated Young’s modulus and strains. For the simulation of materials of Poisson’s ratios other than 1/4, a pairwise compensation scheme for discretized peridynamics is proposed. Compared with classical (local) elasticity solutions, the computational results by applying the proposed scheme show good agreement in the strain, the resultant Young’s modulus and Poisson’s ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askari E, Bobaru F, Lehoucq RB, Parks ML, Silling SA, Weckner O (2008) Peridynamics for multiscale materials modeling. J Phys 125:012–078. IOP Publishing, Tokyo

    Google Scholar 

  2. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620

    Article  MathSciNet  MATH  Google Scholar 

  3. Bobaru F (2007) Influence of Van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach. Model Simul Mater Sci Eng 15: 397

    Article  Google Scholar 

  4. Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Methods Eng 77(6): 852–877

    Article  MATH  Google Scholar 

  5. Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 54(9): 1811–1842. doi:10.1016/j.jmps.2006.04.001

    Article  MathSciNet  MATH  Google Scholar 

  6. De S, Hong JW, Bathe KJ (2003) On the method of finite spheres in applications: towards the use with ADINA and in a surgical simulator. Comput Mech 31(1): 27–37

    Article  MathSciNet  MATH  Google Scholar 

  7. Demmie PN, Silling SA (2007) An approach to modeling extreme loading of structures using peridynamics. J Mech Mater Struct 2: 1921–1945

    Article  Google Scholar 

  8. Edelen DGB, Green AE, Laws N (1971) Nonlocal continuum mechanics. Arch Ration Mech Anal 43(1): 36–44

    MathSciNet  MATH  Google Scholar 

  9. Emmrich E, Weckner O (2006) The peridynamic equation of motion in non-local elasticity theory. In: III European conference on computational mechanics. Solids, structures and coupled problems in engineering, vol 19. Springer, Lisbon

  10. Emmrich E, Weckner O (2007) On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun Math Sci 5(4): 851–864

    MathSciNet  MATH  Google Scholar 

  11. Ercolessi F (1997) A molecular dynamics primer. Spring College in Computational Physics, ICTP, Trieste, pp 24–25

    Google Scholar 

  12. Foster JT, Silling SA, Chen WW (2009) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81(10): 1242–1258

    Google Scholar 

  13. Foulk JW, Allen DH, Helms KLE (2000) Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Comput Methods Appl Mech Eng 183(1–2): 51–66

    Article  MATH  Google Scholar 

  14. Gerstle W, Sau N, Silling SA (2005) Peridynamic modeling of plain and reinforced concrete structures. In: SMiRT18: 18th Int. conf. struct. mech. react. technol., Beijing

  15. Gerstle W, Sau N, Silling SA (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237(12–13): 1250–1258

    Article  Google Scholar 

  16. Gils MAJV, van der Sluis O, Zhang GQ, Janssen JHJ, Voncken RMJ (2007) Analysis of Cu/low-k bond pad delamination by using a novel failure index. Microelectron Reliab 47(2–3): 179–186

    Google Scholar 

  17. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2): 229–244

    Article  MATH  Google Scholar 

  18. Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6): 1156–1168. doi:10.1016/j.engfracmech.2010.11.020

    Article  Google Scholar 

  19. Holian BL, Ravelo R (1995) Fracture simulations using large-scale molecular dynamics. Phys Rev B 51(17): 11275–11288. doi:10.1103/PhysRevB.51.11275

    Article  Google Scholar 

  20. Hong JW, Bathe KJ (2003) On analytical transformations for efficiency improvements in the method of finite spheres. In: Bathe KJ (ed) Comput Fluid Solid Mechanics, vol 1. Elsevier

  21. Hong JW, Bathe KJ (2005) Coupling and enrichment schemes for finite element and finite sphere discretizations. Comput Struct 83(17–18): 1386–1395

    Article  MathSciNet  Google Scholar 

  22. Kilic B (2009) Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. PhD Thesis, The University of Arizona

  23. Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156(2): 165–177

    Article  Google Scholar 

  24. Kilic B, Madenci E (2009) Structural stability and failure analysis using peridynamic theory. Int J Non-linear Mech 44(8): 845–854

    Article  MATH  Google Scholar 

  25. Kozicki J, Tejchman J (2006) 2D lattice model for fracture in brittle materials. Arch Hydro-Eng Environ Mech 53(2): 71–88

    Google Scholar 

  26. Kozicki J, Tejchman J (2008) Modelling of fracture process in concrete using a novel lattice model. Granul Matter 10(5): 377–388

    Article  Google Scholar 

  27. Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56(4): 1566–1577

    Article  MathSciNet  MATH  Google Scholar 

  28. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15): 1169–1178

    Article  MathSciNet  Google Scholar 

  29. Mase GT, Smelser RE, Mase GE (1999) Continuum mechanics for engineers. CRC, Boca Raton

    Book  MATH  Google Scholar 

  30. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7): 813–833

    Article  Google Scholar 

  31. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150

    Article  MATH  Google Scholar 

  32. Nishioka T (1995) Recent developments in computational dynamic fracture mechanics. Dynamic fracture mechanics (A 96-14151 02-39). Computational Mechanics Publications, Billerica, pp 1–60

  33. Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179(11): 777–783

    Article  MATH  Google Scholar 

  34. Parks ML, Plimpton SJ, Lehoucq RB, Silling SA (2008) Peridynamics with LAMMPS: A user guide. Tech. rep., Technical Report SAND 2008-1035, Sandia National Laboratories, Livermore

  35. Sanford RJ (2003) Principles of fracture mechanics. Prentice Hall, New Delhi

    Google Scholar 

  36. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1): 175–209

    Article  MathSciNet  MATH  Google Scholar 

  37. Silling SA (2010) Linearized theory of peridynamic states. J Elast 99(1): 85–111

    Article  MathSciNet  MATH  Google Scholar 

  38. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18): 1526–1535

    Article  Google Scholar 

  39. Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non-linear Mech 40(2–3): 395–409

    Article  MATH  Google Scholar 

  40. Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93(1): 13–37. doi:10.1007/s10659-008-9163-3

    Article  MathSciNet  MATH  Google Scholar 

  41. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44: 73–168

    Article  Google Scholar 

  42. Silling SA, Zimmermann M, Abeyaratne R (2003) Deformation of a peridynamic bar. J Elast 73(1): 173–190

    Article  MathSciNet  MATH  Google Scholar 

  43. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2): 151–184. doi:10.1007/s10659-007-9125-1

    Article  MathSciNet  MATH  Google Scholar 

  44. Tay TE (2003) Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl Mech Rev 56: 1

    Article  Google Scholar 

  45. Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J (2009) A non-ordinary state-based peridynamic method to model solid material deformation and fracture. Int J Solids Struct 46(5): 1186–1195

    Article  MATH  Google Scholar 

  46. Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53(3): 705–728

    Article  MathSciNet  MATH  Google Scholar 

  47. Zimmermann M (2005) A continuum theory with long-range forces for solids. PhD Thesis, Massachusetts Institute of Technology

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Wuk Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Hong, J.W. Discretized peridynamics for linear elastic solids. Comput Mech 50, 579–590 (2012). https://doi.org/10.1007/s00466-012-0690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0690-1

Keywords

Navigation