Skip to main content
Log in

On phase transformation models for thermo-mechanically coupled response of Nitinol

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Fully coupled thermomechanical models for Nitinol at the grain level are developed in this work to capture the inter-dependence between deformation and temperature under non-isothermal conditions. The martensite transformation equations are solved using a novel algorithm which imposes all relevant constraints on the volume fractions. The numerical implementation of the resulting models within the finite element method is effected by the monolithic solution of the momentum and energy equations. Validation of the models is achieved by means of thin-tube experiments at different strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siredey N, Patoor E, Berveiller M, Eberhardt A (1999) Constitutive equations for polycrystalline thermoelastic shape memory alloys. Part I. Intragranular interactions and behavior of the grain. Int J Solids Struct 36: 4289–4315

    Article  MATH  Google Scholar 

  2. Gao X, Huang M, Brinson LC (2000) A multivariant micromechanical model for SMAs part 1. crystallographic issues for the single crystal model. Int J Plast 16: 1345–1369

    Article  MATH  Google Scholar 

  3. Govindjee S, Miehe C (2001) A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comput Methods Appl Mech Eng 191: 215–238

    Article  MATH  Google Scholar 

  4. Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Shape memory alloys, part I: general properties and modeling of single crystals. Mech Mater 38: 391–429

    Article  Google Scholar 

  5. Anand L, Gurtin ME (2003) Thermal effects in the superelasticity of crystalline shape-memory materials. J Mech Phys Solids 51: 1015–1058

    Article  MathSciNet  MATH  Google Scholar 

  6. Turtletaub S, Suiker ASJ (2006) A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations. Int J Sol Struct 43: 4509–4545

    Article  Google Scholar 

  7. Stein E, Sagar G (2007) Theory and finite element computation of cyclic martensitic phase transformation at finite strain. Int J Numer Methods Eng 74: 1–31

    Article  MathSciNet  Google Scholar 

  8. Govindjee S, Hall GJ (2000) A computational model for shape memory alloys. Int J Solids Struct 37: 735–760

    Article  MATH  Google Scholar 

  9. Jung Y, Papadopoulos P, Ritchie RO (2004) Constitutive modelling and numerical simulation of multivariant phase transformation in superelastic shape-memory alloys. Int J Numer Methods Eng 60: 429–460

    Article  MathSciNet  MATH  Google Scholar 

  10. Sengupta A, Papadopoulos P (2011) A note on the use of multiplicative decomposition for displacive phase transformations. Int J Eng Sci (accepted)

  11. Mandel J (1973) Thermodynamics and plasticity. In: Foundations of continuum thermodynamics. Macmillan, New York, pp 283–304

  12. Christ D, Reese S (2009) A finite element model for shape memory alloys considering thermomechanical couplings at large strains. Int J Solids Struct 46: 3694–3709

    Article  MATH  Google Scholar 

  13. Thamburaja P, Anand L (2001) Polycrystalline shape-memory materials: effect of crystallographic texture. J Mech Phys Solids 49: 709–737

    Article  MATH  Google Scholar 

  14. Entemeyer D, Patoor E, Eberhardt E, Berveiller A (2000) Strain rate sensitivity in superelasticity. Int J Plast 16: 1269–1288

    Article  MATH  Google Scholar 

  15. Nemat-Nasser S, Choi JY, Guo WG, Isaacs JB, Taya M (2005) High strain-rate, small strain response of a NiTi shape-memory alloy. J Eng Mater Technol 127: 83–89

    Article  Google Scholar 

  16. Grabe C, Bruhns OT (2008) On the viscous and strain rate dependent behavior of polycrystalline NiTi. Int J Solids Struct 45: 1876–1895

    Article  MATH  Google Scholar 

  17. Helm D, Haupt P (2003) Shape memory behaviour: modelling within continuum thermomechanics. Int J Solids Struct 40: 827–849

    Article  MATH  Google Scholar 

  18. Taylor RL (2008) FEAP—a finite element analysis program: users manual. University of California, Berkeley. http://www.ce.berkeley.edu/rlt

  19. Holman JP (1990) Heat transfer. McGraw-Hill, New York

    Google Scholar 

  20. McNaney JM, Imbeni V, Jung Y, Papadopoulos P, Ritchie RO (2003) An experimental study of the superelastic effect in a shape-memory nitinol alloy under biaxial loading. Mech Mat 35: 969–986

    Article  Google Scholar 

  21. Duerig TW, Pelton AR (1994) Ti-Ni shape memory alloys. In: Materials properties handbook titanium alloys, pp 1035–1048

  22. Johnson Matthey Medical. Nitinol technical properties. http://jmmedical.com/resources/221/Nitinol-Technical-Properties.html (2009)

  23. Papadopoulos P, Sengupta A, Taylor RL (2011) A multiscale finite-element method for modeling fully-coupled thermomechanical problems in solids (in press)

  24. Sengupta A, Papadopoulos P (2009) Constitutive modeling and finite element approximation of B2-R-B19’ phase transformations in Nitinol polycrystals. Comput Methods Appl Mech Eng 198: 3214–3227

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panayiotis Papadopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, A., Papadopoulos, P., Kueck, A. et al. On phase transformation models for thermo-mechanically coupled response of Nitinol. Comput Mech 48, 213–227 (2011). https://doi.org/10.1007/s00466-011-0587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0587-4

Keywords

Navigation