Skip to main content
Log in

Multi-length scale micromorphic process zone model

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The prediction of fracture toughness for hierarchical materials remains a challenging research issue because it involves different physical phenomena at multiple length scales. In this work, we propose a multiscale process zone model based on linear elastic fracture mechanics and a multiscale micromorphic theory. By computing the stress intensity factor in a K-dominant region while maintaining the mechanism of failure in the process zone, this model allows the evaluation of the fracture toughness of hierarchical materials as a function of their microstructural properties. After introducing a multi-length scale finite element formulation, an application is presented for high strength alloys, whose microstructure typically contains two populations of particles at different length scales. For this material, the design parameters comprise of the strength of the matrix–particle interface, the particle volume fraction and the strain-hardening of the matrix. Using the proposed framework, trends in the fracture toughness are computed as a function of design parameters, showing potential applications in computational materials design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aravas N, McMeeking RM (1985) Microvoid growth and failure in the ligament between a hole and a blunt crack tip. Int J Fract 29: 21–38

    Article  Google Scholar 

  2. Baaser H, Gross D (2003) Analysis of void growth in a ductile material. Comput Mater Sci 26: 28–35

    Article  Google Scholar 

  3. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  4. Chen JY, Wei Y, Huang Y, Hutchinson JW, Hwang KC (1999) The crack tip fields in strain gradient plasticity: the asymptotic and numerical analyses. Eng Fract Mech 64: 625–648

    Article  Google Scholar 

  5. Ghosal AK, Narasimhan R (1996) Mixed-mode fracture initiation in a ductile material with a dual population of second-phase particles. Mater Sci Eng A 211: 117–127

    Article  Google Scholar 

  6. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth. Part 1. Yield criteria and flow rules for porous ductile media. ASME J Eng Mater Technol 99: 2–15

    Google Scholar 

  7. Hao S, Liu WK, Moran B, Vernerey F, Olson GB (2004) Multiple-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Comput Methods Appl Mech Eng 193: 1865

    Article  MATH  Google Scholar 

  8. Huang Y, Zhang TF, Guo TF, Hwang KC (1997) Mixed mode near-tip fields for cracks in materials with strain gradient effects. J Mech Phys Solids 45: 439–465

    Article  MATH  Google Scholar 

  9. Hutchinson JW (1968) Plastic stress and strain fields at crack tip. J Mech Phys Solids 16(5): 337–347

    Article  MathSciNet  Google Scholar 

  10. Kanninen MF, Popelar CH (1985) Adv Fract Mech. Oxford Engineering Series, Oxford

    Google Scholar 

  11. Li S, Liu WK (2004) Meshfree particle methods. Springer, Heidelberg, p 502

    MATH  Google Scholar 

  12. Liu WK, McVeigh C (2008) Predictive multiscale theory for design of heterogeneous materials. Comput Mech 42(2): 147–170

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu WK, Jun S, Zhang YF (1995a) Reproducing kernel particle methods. Int J Numer Methods Fluids 20: 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995b) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38: 1655–1679

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu WK, Karpov EG, Zhang S, Park HS (2004) An introduction to computational nanomechanics and materials. Comput Methods Appl Mech Eng 193: 1529–1578

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu WK, Karpov EG, Parks HS (2006) Nano mechanics and materials, theory, multiscale, methods and applications. Wiley, New York

    Google Scholar 

  17. McVeigh C, Liu WK (2008a) Multiresolution modeling of ductile reinforced brittle composites. J Mech Phys Solids. doi:10.1016/j.jmps.2008.10.015

  18. McVeigh C, Liu WK (2008b) Linking microstructure and properties through a predictive multiresolution continuum. Comput Methods Appl Mech Eng 197: 3268–3290

    Article  MATH  MathSciNet  Google Scholar 

  19. McVeigh C, Vernerey F, Liu WK, Brinson LC (2006) Multiresolution analysis for material design. Comput Methods Appl Mech Eng 95:37–40, 5053–5076

    Google Scholar 

  20. McVeigh C, Vernerey F, Liu WK, Moran B (2007) An interactive microvoid shear localization mechanism in high strength steels. J Mech Phys Solids 55:2, 225–244

    Google Scholar 

  21. Needleman A, Tvergaard V (1984) An analysis of ductile rupture in notched bars. J Mech Phys Solids 32: 461–490

    Article  Google Scholar 

  22. Needleman A, Tvergaard V (1987) An analysis of ductile rupture modes at a crack tip. J Mech Phys Solids 35(2): 151–183

    Article  MATH  Google Scholar 

  23. Needleman A, Tvergaard V (1998) Dynamic crack growth in a nonlocal progressively cavitating solid. Eur J Mech A/Solids 17: 421–438

    Article  MATH  MathSciNet  Google Scholar 

  24. Pardoen T, Hutchinson JW (2003) Micromechanics-based model for trends in toughness of ductile metals. Acta Mater 51(1): 133–148

    Article  Google Scholar 

  25. Rice JR (1967) A path independent integral and the approximate analysis of strain concentration by notches and cracks. Report: E39, 49p

  26. Rice JR, Johnson MA et al (1970) The role of large crack tip geometry changes in plane strain fracture. In: Kanninen MF(eds) Inelastic behavior of Solids. McGraw-Hill, New York, pp 641–672

    Google Scholar 

  27. Tvergaard V (1988) 3d-analysis of localization failure in a ductile material containing two size-scales of spherical particles. Eng Fract Mech 31: 421–436

    Article  Google Scholar 

  28. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J Mech Phys Solids 40: 1377

    Article  MATH  Google Scholar 

  29. Tvergaard V, Hutchinson JW (1996) On the toughness of ductile adhesive joints. J Mech Phys Solids 44: 789–800

    Article  Google Scholar 

  30. Vernerey FJ, McVeigh C, Liu WK, Moran B, Tewari D, Parks D, Olson G (2006) The 3D computational modeling of shear dominated ductile failure of steel. J Minerals Metals Mater Soc, pp 45–51

  31. Vernerey F, Liu WK, Moran B (2007) Multiscale micromorphic theory for hierarchical materials. J Mech Phys Solids 55(12): 2603–2651

    Article  MATH  MathSciNet  Google Scholar 

  32. Vernerey F, Liu WK, Moran B, Olson GB (2008) A micromorphic model for the multiple scale failure of heterogeneous materials. J Mech Phys Solids 56(4): 1320–1347

    Article  MathSciNet  Google Scholar 

  33. Xia ZC, Hutchinson W (1996) Crack tip fields in strain gradient plasticity. J Mech Phys Solids 44: 1621–1648

    Article  Google Scholar 

  34. Xia ZC, Shih CF (1995a) Ductile crack growth—numerical study using computational cells with microstrucurally-based length scales. J Mech Phys Solids 43: 233–259

    Article  MATH  Google Scholar 

  35. Xia ZC, Shih CF (1995b) Ductile crack growth. II. Void nucleation and geometry effects on macroscopic fracture behavior. J Mech Phys Solids 43: 1953–1981

    Article  MATH  Google Scholar 

  36. Xia ZC, Shih CF, Hutchinson W (1994) A computational approach to ductile crack growth under large scale yielding conditions. J Mech Phys Solids 43: 389–413

    Article  Google Scholar 

  37. Yan C, Mai YW (1998) Effect of constraint on void growth near a blunt crack tip. Int J Fract 92: 287–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Franck Vernerey or Wing Kam Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vernerey, F., Liu, W.K., Moran, B. et al. Multi-length scale micromorphic process zone model. Comput Mech 44, 433–445 (2009). https://doi.org/10.1007/s00466-009-0382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0382-7

Keywords

Navigation