Skip to main content
Log in

The effect of biological sulfate reduction on anaerobic color removal in anaerobic–aerobic sequencing batch reactors

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Combination of anaerobic–aerobic sequencing processes result in both anaerobic color removal and aerobic aromatic amine removal during the treatment of dye-containing wastewaters. The aim of the present study was to gain more insight into the competitive biochemical reactions between sulfate and azo dye in the presence of glucose as electron donor source. For this aim, anaerobic–aerobic sequencing batch reactor fed with a simulated textile effluent including Remazol Brilliant Violet 5R (RBV 5R) azo dye was operated with a total cycle time of 12 h including anaerobic (6 h) and aerobic cycles (6 h). Microorganism grown under anaerobic phase of the reactor was exposed to different amounts of competitive electron acceptor (sulfate). Performance of the anaerobic phase was determined by monitoring color removal efficiency, oxidation reduction potential, color removal rate, chemical oxygen demand (COD), color, specific anaerobic enzyme (azo reductase) and aerobic enzyme (catechol 1,2-dioxygenase), and formation of aromatic amines. The presence of sulfate was not found to significantly affect dye decolorization. Sulfate and azo dye reductions took place simultaneously in all operational conditions and increase in the sulfate concentration generally stimulated the reduction of RBV 5R. However, sulfate accumulation under anaerobic conditions was observed proportional to increasing sulfate concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84

    Article  CAS  Google Scholar 

  2. Lourenço ND, Novais JM, Pinheiro HM (2001) Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J Biotechnol 89:163–174

    Article  Google Scholar 

  3. Shaw CB, Carliell CM, Wheatley AD (2002) Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors. Water Res 36(8):1993–2001

    Article  CAS  Google Scholar 

  4. Carliell CM, Barclay SJ, Naidoo N (1995) Microbial decolourisation of a reactive azo dye under anaerobic conditions. Water SA 21:61–69

    CAS  Google Scholar 

  5. Gottlieb A, Shaw C, Smith A, Wheatley A, Forsythe S (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. J Biotechnol 101:49–56

    Article  CAS  Google Scholar 

  6. Haug W, Schmidt A, Nortemann B, Hempel DC, Stolz A, Knackmuss HJ (1991) Mineralization of the sulfonated azo dye mordant yellow 3 by a 6-aminophtalene-2-sulfonate-degrading bacterial consortium. Appl Environ Microbiol 57:3144–3149

    CAS  Google Scholar 

  7. Zaoyan Y, Ke S, Guangliang S, Fan Y, Jinshan D, Huanian M (1992) Anaerobic-aerobic treatment of a dye wastewater by combination of RBC with activated sludge. Water Sci Technol 26:2093–2096

    CAS  Google Scholar 

  8. Seshadri S, Bishop PL, Agha AM (1994) Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manage (Oxford) 14:127–137

    Article  CAS  Google Scholar 

  9. Kudlich M, Bishop P, Knackmuss HJ, Stolz A (1996) Simultaneous anaerobic and aerobic degradation of the sulfonated azo dye Mordant Yellow 3 by immobilized cells from a naphthalenesulfonate-degrading mixed culture. Applied Microbiol Biotechnol 46:597–603

    Article  CAS  Google Scholar 

  10. Hu TL (1998) Degradation of azo dye RP2B by Pseudomonas luteola. Water Sci Technol 38:299–306

    CAS  Google Scholar 

  11. Sen S, Demirer GN (2003) Anaerobic treatment of synthetic textile wastewater containing a reactive azo dye. J Environ Eng 129:595–601

    Article  CAS  Google Scholar 

  12. O’Neill C, Lopez A, Esteves S, Hawkes FR, Hawkes DL, Wilcox S (2000) Azo-dye degradation in an anaerobic–aerobic treatment system operating on simulated textile effluent. Appl Microbiol Biotechnol 53(2):249–254

    Article  Google Scholar 

  13. Dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Article  Google Scholar 

  14. Luangdilok W, Paswad T (2000) Effect of chemical structures of reactive dyes on color removal by an anaerobic–aerobic process. Water Sci Technol 42(3–4):377–382

    CAS  Google Scholar 

  15. Panswad T, Iamsamer K, Anotai J (2001) Decolorisation of azo-reactive dye by polyphosphate and glycogen-accumulating organisms in an anaerobic–aerobic sequencing batch reactor. Bioresour Technol 76:151–159

    Article  CAS  Google Scholar 

  16. Basibuyuk M, Forster CF (1997) ‘The use of sequential anaerobic/aerobic processes for the biotreatment of a simulated dyeing wastewater’. Environ Technol 18:843–848

    CAS  Google Scholar 

  17. Lourenço ND, Novais JM, Pinheiro HM (2000) Reactive textile dye colour removal in a sequencing batch reactor. Water Sci Technol 42:321–328

    Google Scholar 

  18. Panswad T, Luangdilok W (2000) Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water Res 34(17):4177–4184

    Article  CAS  Google Scholar 

  19. Çınar Ö, Demiröz K, Kanat G, Uysal Y, Yaman C (2009) The effect of oxygen on anaerobic color removal of azo dye in sequencing batch reactor. Clean 37(8):657–662

    Google Scholar 

  20. van der Zee FP, Bisschops IAE, Blanchard VG, Bouwman RHM, Lettinga G, Field JA (2003) The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge. Water Res 37:3098–3109

    Article  Google Scholar 

  21. Carliell CM, Barclay SJ, Shaw C, Wheatley AD, Buckley CA (1998) The effect of salts used in textile dyeing on microbial decolourisation of a reactive azo dye. Environ Technol 19:1133–1137

    Article  CAS  Google Scholar 

  22. Albuquerque MGE, Lopes AT, Serralheiro ML (2005) Biological sulphate reduction and redox mediatör effects on azo dye decolourisation in anaerobic–aerobic sequencing batch reactors. Enzyme Microb Technol 36:790–799

    Article  CAS  Google Scholar 

  23. Kim SY, An JY, Kim BW (2008) The effects of reductant and carbon source on the microbial decolorization of azo dyes in an anaerobic sludge process. Dyes Pigm 76:256–263

    Article  Google Scholar 

  24. Yoo ES (2002) Kinetics of chemical decolorization of the azo dye C.I. Reactive Orange 96 by sulfide. Chemosphere 47:925–931

    Article  CAS  Google Scholar 

  25. Clesceri LS, Greenberg AE, Eaton AD (1998) Standard Methods for the Examination of Water and Wastewater (20th Edition). American Public Health Association and Water Environment Federation, Washington DC

    Google Scholar 

  26. Çınar Ö, Yaşar S, Kertmen M (2008) Effect of cycle time on biodegradation of azo dye in sequencing batch reactor. Process Saf Environ Prot 86:455–460

    Article  Google Scholar 

  27. Kolomytseva MP, Baskunov BP, Golovleva LA (2007) Intradiol pathway of para-cresol conversion by Rhodococcus Opacus 1CP. J Biotechnol 2:886–893

    Article  CAS  Google Scholar 

  28. Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66(4):1429–1434

    Article  CAS  Google Scholar 

  29. Daniels, L., Hanson, R.S., Philips, J.A., 1994. Chemical analysis in methods for general and molecular bacteriology. Gerhart P (ed) American Society For Microbiology, Washington DC, pp 512–554

  30. Dolla A, Fournier M, Dermoun Z (2006) Oxygen defense in sulfate-reducing bacteria. J Biotechnol 12:87–100

    Article  Google Scholar 

  31. Dubin P, Wright KL (1975) Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 5(9):563–571

    Article  CAS  Google Scholar 

  32. Yoo ES, Libra J, Adrian L (2001) Mechanism of decolorization of azo dyes in an anaerobic mixed culture. J Environ Eng 127:844–849

    Article  CAS  Google Scholar 

  33. Ong SA, Toorisaka E, Hirata M, Hano T (2008) Granular activated carbon biofilm configured sequencing batch reactor treatment of C.I. acid orange 7. Dyes Pigm 76:142–146

    Article  Google Scholar 

  34. Işık M, Sponza DT (2005) Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorising simulated textile wastewater. Process Biochem 40:1189–1198

    Article  Google Scholar 

  35. Kapdan IK, Alparslan S (2005) Application of anaerobic–aerobic sequential system to real textile wastewater for color and COD removal. Enzyme Microb Technol 36:273–279

    Article  CAS  Google Scholar 

  36. Lourenço ND, Novais JM, Pinheiro HM (2003) Analysis of secondary metabolite fate during anaerobic–aerobic azo dye biodegradation in a sequential batch reactor. Environ Technol 24(6):679–686

    Article  Google Scholar 

  37. Supaka N, Juntongjin K, Damronglerd S (2004) Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. J Chem Eng 99:169–176

    Article  CAS  Google Scholar 

  38. van der Zee FP, Lettinga G, Field JA (2001) Azo dye decolourisation by anaerobic granular sludge. Chemosphere 44:1169–1176

    Article  Google Scholar 

  39. Cervantes FJ, Enriquez JE, Mendoza Hernandez MR, Flores E, Field JA (2006) The role of sulphate reduction on the reductive decolorization of the azo dye reactive orange 14. Water Sci Technol 54(2):171–177

    Article  CAS  Google Scholar 

  40. Cervantes FJ, Enriquez Javier E, Petatán Eden Galindo et al (2007) Biogenic sulphide plays a major role on the riboflavin-mediated decolourisation of azo dyes under sulphate-reducing conditions. Chemosphere 68(6):1082–1089

    Article  CAS  Google Scholar 

  41. Kim SY, An JY, Kim BW (2008) The effects of reductant and carbon source on the microbial decolorization of azo dyes in an anaerobic sludge process. Dyes Pigm 76:256–263

    Article  Google Scholar 

  42. Lourenco ND, Novais JM, Pinheiro HM (2006) Kinetic studies of reactive azo dye decolorization in anaerobic/aerobic sequencing batch reactors. Biotechnol Lett 28:733–739

    Article  CAS  Google Scholar 

  43. Ramalho A, Cardoso MH, Cavaco-Paulo A, Ramalho MT (2004) Characterization of azo reduction activity in a novel Ascomycete yeast strain. Appl Environ Microbiol 70:2279–2288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozer Cinar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirik, K., Kitis, M. & Cinar, O. The effect of biological sulfate reduction on anaerobic color removal in anaerobic–aerobic sequencing batch reactors. Bioprocess Biosyst Eng 36, 579–589 (2013). https://doi.org/10.1007/s00449-012-0813-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0813-2

Keywords

Navigation