Skip to main content

Advertisement

Log in

Field evidence for flank instability, basal spreading and volcano-tectonic interactions at Mt Cameroon, West Africa

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Mt Cameroon volcano is the highest and most active volcano of the Cameroon Volcanic Line. Little geological information is available for improving the understanding of the structure of this large volcanic system and its relationship to regional tectonics. After reviewing the tectonic evolution of the region, the analysis of a Digital Elevation Model and results from a field campaign dedicated to mapping geological structures in the summit area and at the SE base of Mt Cameroon are presented. Mt Cameroon is a lava-dominated volcano with long steep (over 30°) flanks. It is elongate parallel to its well defined rift zone. The summit plateau is bordered by 10 m high cliffs formed by summit subsidence along normal faults. Geological profiles were measured along rivers cutting through a topographic step at the SE base of Mt Cameroon. This step is associated with deformed Miocene sediments from the Douala basin that are overlain by volcanic products. Weak sediments of this area are deformed by 050°–060° and 020°–030° trending asymmetrical folds verging toward the SE, and thrusts faults related to the spreading of the volcano over its mechanically weak substratum. Combined remote sensing and field observations suggest that spreading is accommodated by summit subsidence and flanks sliding. Both slow spreading movements and catastrophic collapses of the steep flanks are interpreted to result from complex interactions between the growing edifice, repeated dyke intrusions, the weak sedimentary substratum and tectonic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acocella V (2005) Modes of sector collapse of volcanic cones: Insights from analogue experiments. J Geophys Res 110. doi:10.1029/2004JB003166

  • Ambeh WB, Fairhead JD (1991) Regular deep seismicity beneath Mt Cameroon volcano: lack of evidence for tidal triggering. Geophys J Int 106:287–291

    Article  Google Scholar 

  • Ambeh WB, Fairhead JD, Stuart W (1992) Seismotectonics of the Mount Cameroon volcanic region, West Africa. In: Gasparini P et al (eds) Volcanic seismology, IAVCEI Proceedings of Volcanology. Springer, Berlin, pp 45–61

    Google Scholar 

  • Annen C, Lénat J-F, Provost A (2001) The long-term growth of volcanic edifices: numerical modelling of dyke intrusion and lava-flow emplacement. J Volcanol Geoth Res 105:263–289

    Article  Google Scholar 

  • Ateba B, Ntepe N (1997) Post-eruptive seismic activity of Mount Cameroon (Cameroon), West Africa: a statistical analysis. J Volcanol Geoth Res 79:25–45

    Article  Google Scholar 

  • Ateba B, Dorbath C, Dorbath L, Ntepe N, Frogneux M, Aka FT, Hell JV, Delmond JC, Manguelle D (2009) Eruptive and earthquake activities related to the 2000 eruption of Mount Cameroon volcano (West Africa). J Volcanol Geoth Res 179:206–216

    Article  Google Scholar 

  • Ayonghe SN, Ntasin EB, Samalang P, Suh CE (2004) The June 27, 2001 landslide on volcanic cones in Limbe, Mount Cameroon, West Africa. J Afr Earth Sci 39(3–5):435–439

    Article  Google Scholar 

  • Benkhelil J, Giresse P, Poumot C, Ngueutchoua G (2002) Lithostratigraphic, geophysical and morpho-tectonic studies of the South Cameroon shelf. Mar Petrol Geol 19(4):499–517

    Article  Google Scholar 

  • Bonne K, Kervyn M, Cascone L, Njome S, Van Ranst E, Suh E, Ayonghe S, Jacobs P, Ernst GGJ (2007) A new approach to assess long-term lava flow hazard and risk using GIS and low cost remote sensing: the case of Mount Cameroon, West Africa. Int J Remote Sens 29:6539–3564

    Article  Google Scholar 

  • Borgia A, Treves B (1992) Volcanic plates overriding the ocean crust: structure and dynamics of Hawaiian volcanoes. Geol Soc Lond Spec Publ 60:277–299

    Article  Google Scholar 

  • Borgia A, van Wyk de Vries B (2003) The volcano-tectonic evolution of Concepcion, Nicaragua. B Volcanol 65(4):248–266

    Article  Google Scholar 

  • Borgia A, Ferrari L, Pasquare G (1992) Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357(6375):231–235

    Article  Google Scholar 

  • Burke K, Wilson JT (1972) Is African plate stationary? Nature 239(5372):387–390

    Article  Google Scholar 

  • Cecchi E, van Wyk de Vries B, Lavest JM (2004) Flank spreading and collapse of weak-cored volcanoes. B Volcanol 67(1):72–91

    Article  Google Scholar 

  • Delaney PT, Denlinger RP, Lisowski M, Miklius A, Okubo PG, Okamura AT, Sako MK (1998) Volcanic spreading at Kilauea, 1976–1996. J Geoph Res 103(B8):18003–18023. doi:10.1029/98JB01665

    Article  Google Scholar 

  • Delcamp A, van Wyk de Vries B, James MR (2008) The influence of edifice slope and substrata on volcano spreading. J Volcanol Geoth Res 177(4):925–943

    Article  Google Scholar 

  • Déruelle B, Nni J, Kambou R (1987) Mount Cameroon—an active volcano of the Cameroon line. J Afr Earth Sci 6(2):197–214

    Article  Google Scholar 

  • Déruelle B, Moreau C, Nkoumbou C, Kambou R, Lissom J, Njongfang E, Ghogomu RT, Nono A (1991) The Cameroon line: a review. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings. The Phanerozoic African plate. Springer-Verlag, Berlin, pp 274–327

    Google Scholar 

  • Déruelle B, Ngounouno I, Demaiffe D (2007) The “Cameroon hot line”: an unique example of active alkaline intraplate structure in both oceanic and continetal lithosphere. CR Geo Sci 339:589–600

    Article  Google Scholar 

  • Dessauvagie TFJ (1974) A geological map of Nigeria. The Nigerian Mining Geological & Metallurgical Society, scale 1:1,000,00

  • Dumort JC (1968) Notice Explicative de la Feuille Douala Ouest avec carte gélogique au 1/500 000. Direction des Mines, Géologie, Cameroon, scale 1:500,000

  • Fairhead JD (1985) Preliminary study of the seismicity associated with the Cameroon volcanic province during the volcanic eruption of Mount Cameroon in 1982. J Afr Earth Sci 3:297–301

    Article  Google Scholar 

  • Fairhead JD, Binks RM (1991) Differential opening of the Central and South-Atlantic oceans and the opening of the West African rfit system. Tectonophysics 187:191–203

    Article  Google Scholar 

  • Fairhead JD, Okereke CS (1987) A regional gravity study of the West African rift system in Nigeria and Cameroon and its tectonic interpretation. Tectonophysics 143(1–3):141–159

    Article  Google Scholar 

  • Fitton JG (1983) Active versus passive continental rifting—evidence from the West-African rift system. Tectonophysics 94(1–4):473–481

    Google Scholar 

  • Fitton JG, Dunlop HM (1985) The Cameroon line, West-Africa, and its bearing on the origin of oceanic and continental alkali basalt. Earth Planet Sc Lett 72(1):23–38

    Article  Google Scholar 

  • Freeth SJ, Kay RLF (1987) The lake Nyos gas disaster. Nature 325:104–105

    Article  Google Scholar 

  • Gèze B (1943) Géographie physique et géologie du Cameroon occidental. Mémoir Mus Natl Hist 17:1–272

    Google Scholar 

  • Gèze B (1953) Les volcans du Cameroon occidental. B Volcanol 13:63–92

    Article  Google Scholar 

  • Hedberg JD (1968) A geological analysis of the Cameroon trend. PhD Thesis, Princeton University, 188 pp

  • Kervyn M, Goossens R, Jacobs P, Ernst GGJ (2008) Mapping volcano topography with remote sensing: ASTER vs SRTM. Int J Remote Sens 29:6515–6538

    Article  Google Scholar 

  • Kervyn M, van Wyk de Vries B, Walter TR, Mathieu L, Ernst GGJ (2009) Unravelling the complex deformation structures at Mt Cameroon: field evidence and analogue experiments. AGU, Fall Meeting 2009, abstract #V23E-2162, San Francisco

  • Kervyn M, Boone MN, Van Wyk de Vries B, Lebas E, Cnudde V, Fontijn K, Jacobs P (2010) 3D mapping of volcano gravitational deformation by computerized X-ray micro-tomography. Geosphere 6(5):482–498. doi:10.1130/GES00564.1

    Article  Google Scholar 

  • Le Corvec N, Walter TR (2009) Volcano spreading and fault interaction influenced by rift zone intrusions: insights from analogue experiments analyzed with digital image correlation technique. J Volcanol Geoth Res 183(3–4):170–182. doi:110.1016/j.jvolgeores.2009.1002.1006

    Article  Google Scholar 

  • Marzoli A, Piccirillo EM, Renne PR, Bellieni G, Iacumin M, Nyobe JB, Tongwa AT (2000) The Cameroon line revisited: petrogenesis of continental basaltic magmas from lithospheric and asthenospheric mantle sources. J Petrol 41:87–109

    Article  Google Scholar 

  • Mathieu (2010) The structure of Guadeloupe, Maderas and Mt Cameroon volcanoes and the impact of strike-slip movements. PhD thesis, Trinity College Dublin, 168 pp

  • McCurry P (1971) Pan-African orogeny in Northern Nigeria. Geol Soc Am Bull 82(11):3251–3262

    Article  Google Scholar 

  • McGuire WJ, Pullen AD (1989) Location and orientation of eruptive fissures and feederdykes at Mount Etna; influence of gravitational and regional tectonic stress regimes. J Volcanol Geoth Res 38(3–4):325–344

    Article  Google Scholar 

  • Merle O, Borgia A (1996) Scaled experiments of volcanic spreading. J Geoph Res 101(B6):13805–13817

    Article  Google Scholar 

  • Merle O, Lénat J-F (2003) Hybrid collapse mechanism at Piton de la Fournaise volcano, Reunion Island, Indian Ocean. J Geoph Res 108(B3):2166–2177. doi:2110.1029/2002JB002014

    Article  Google Scholar 

  • Merle O, Barde-Cabusson S, van Wyk de Vries B (2009) Hydrothermal calderas. B Volcanol 72(2):131–147

    Article  Google Scholar 

  • Meyers JB, Rosendahl BR (1991) Seismic-reflection character of the Cameroon Volcanic Line—evidence for uplifted oceanic-crust. Geology 19(11):1072–1076

    Article  Google Scholar 

  • Meyers JB, Rosendahl BR, Harrison CGA, Ding ZD (1998) Deep-imaging seismic and gravity results from the offshore cameroon volcanic line, and speculation of African hotlines. Tectonophysics 284(1–2):31–63

    Article  Google Scholar 

  • Moreau C, Regnoult JM, Deruelle B, Robineau B (1987) A new tectonic model for the Cameroon Line, Central-Africa. Tectonophysics 141(4):317–334

    Article  Google Scholar 

  • Morgan JK, Moore GF, Hills DJ, Leslie S (2000) Overthrusting and sediment accretion along Kilauea’s mobile south flank, Hawaii: evidence for volcanic spreading from marine seismic reflection data. Geology 28:667–670

    Article  Google Scholar 

  • Murray JB, Guest JE (1982) Vertical ground deformation on Mount Etna, 1975–1980. Geol Soc Am Bull 93(11):1160–1175. doi:1110.1130/0016-7606

    Article  Google Scholar 

  • Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation—principle and proposal. J Volcanol Geoth Res 2(1):1–16

    Article  Google Scholar 

  • Njome MS, Suh CE, Sparks RSJ, Ayonghe SN, Fitton JG (2008) The Mount Cameroon 1959 compound lava flow field: morphology, petrography, geochemistry. Swiss J Geosci 101:85–98

    Article  Google Scholar 

  • Nkoumbou C, Déruelle B, Velde D (1995) Petrology of Mt Etinde nephlinite series. J Petrol 36:373–395

    Google Scholar 

  • Piper JDA, Richardson A (1972) Palaeomagnetism of Gulf of Guinea Volcanic Province, West-Africa. Geophys J Roy Astr S 29(2):147–171

    Google Scholar 

  • Popoff M (1988) From Gondwana to the South-Atlantic—connections between the Benue through and the basins of northeastern Brazil from the Precambrian to the opening of the Gulf of Guinea in the early Cretaceous. J Afr Earth Sci 7:409–431

    Article  Google Scholar 

  • Reyment RA (1954) The stratigraphy of the Southern Cameroon. Geol Foren Stock For 76:661–683

    Google Scholar 

  • Rowland SK, Garbeil H (2000) The slopes of oceanic basalt volcanoes. In: Mouginis-Mark PJ, Crisp J, Fink J (eds) Geoph Monog Series. pp 223–247

  • Suh CE, Sparks RSJ, Fitton JG, Ayonghe SN, Annen C, Nana R, Luckman A (2003) The 1999 and 2000 eruptions of Mount Cameroon: Eruption behaviour and petrochemistry of lava. B Volcanol 65:267–281

    Article  Google Scholar 

  • Tabod CT, Fairhead JD, Stuart GW, Ateba B, Ntepe N (1992) Seismicity of the Cameroon Volcanic Line, 1982–1990. Tectonophysics 212:303–320

    Article  Google Scholar 

  • Thierry P, Stieltjes L, Kouokam E, Ngueya P, Salley PM (2008) Multi-hazard risk mapping and assessment on an active volcano: the GRINP project at Mount Cameroon. Nat Hazards 45:429–456

    Article  Google Scholar 

  • Tibaldi A (2004) Major changes in volcano behaviour after a sector collapse: insights from Stromboli, Italy. Terra Nova 16:2–8. doi:10.1046/j.1365-3121.2003.00517.x

    Article  Google Scholar 

  • Ubangoh RU, Ateba B, Ayonghe SN, Ekodeck GE (1997) Earthquake swarms of Mt Cameroon, West Africa. J Afr Earth Sci 24(4):413–424

    Article  Google Scholar 

  • van Wyk de Vries B, Matela R (1998) Styles of volcano-induced deformation: numerical models of substratum flexure, spreading and extrusion. J Volcanol Geoth Res 81:1–18

    Article  Google Scholar 

  • Walker GPL (1986) Koolau Dike Complex, Oahu: intensity and origin of a sheeted-dike complex high in a Hawaiian volcanic edifice. Geology 14(4):310–313

    Article  Google Scholar 

  • Walker GPL (1988) Three Hawaiian calderas: an origin through loading by shallow intrusions? J Geophys Res 93:14773–14784

    Google Scholar 

  • Walker GPL (1992) “Coherent intrusion complexes” in large basaltic volcanoes—a new structural model. J Volcanol Geoth Res 50(1–2):41–54

    Article  Google Scholar 

  • Walker GPL (1999) Volcanic rift zones and their intrusion swarms. J Volcanol Geoth Res 94(1–4):21–34. doi:10.1016/S0377-0273(99)00096-7

    Article  Google Scholar 

  • Walter TR (2003) Buttressing and fractional spreading of Tenerife, an experimental approach on the formation of rift zones. Geophys Res Lett 30:1296–12300. doi:10.1029/2002GL016610

    Article  Google Scholar 

  • Wilson M, Guiraud R (1992) Magmatism and rifting in Western and Central Africa, from late Jurassic to recent times. Tectonophysics 213:203–225

    Article  Google Scholar 

  • Zogning A (1988) Le Mont Cameroun, un volcan actif: contribution à l’étude de géographie physique appliquée. PhD Thesis, Université de Yaoundé: 447 pp

Download references

Acknowledgement

We thank Ngala, Amstrong, Steven Njome of UBuea and Mt Cameroon guides and porters for assistance in the field. The staff of the Department of Geology and Environmental Sciences at Buea University is acknowledged for his hospitality; help in planning the field work and preparing the logistics, and with supplying some key Mt Cameroon references. Volcano spreading at Mt Cameroon was first envisaged by RSJ Sparks, CE Suh, GGJE and S Njome during an exploratory field survey at Mt Cameroon in November 2002. Work discussed in the present ms benefited from discussions between the authors and all the above as well as with B van Wyk de Vries. D Rust, J White and H Delgado Granados are also warmly acknowledged for their helpful reviews and editing of the manuscript. MK and GGJE were supported by the Belgian National Science Fondation (NSF) (Fonds voor Wetenschappelijk Onderzoek (FWO)-Vlaanderen). LM PhD was funded by IRCSET (Irish Research Council for Science, Engineering and Technology). UBuea-UGhent joint research is facilitated by an ongoing VLIR-OI (Vlaamse Interuniversitaire Raad-Own Initiative) bilateral project coordinated by P Jacobs at UG and CE Suh at UB (formerly by S Ayonghe, who we also thank for his support and encouragements over the years).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Mathieu.

Additional information

Editorial responsibility: H. Delgado Granados

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathieu, L., Kervyn, M. & Ernst, G.G.J. Field evidence for flank instability, basal spreading and volcano-tectonic interactions at Mt Cameroon, West Africa. Bull Volcanol 73, 851–867 (2011). https://doi.org/10.1007/s00445-011-0458-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0458-z

Keywords

Navigation