Skip to main content
Log in

Urine as an important source of sodium increases decomposition in an inland but not coastal tropical forest

  • Ecosystem ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Nutrient pulses can profoundly impact ecosystem processes and urine is a frequently deposited source of N and K, and Na. Na is unimportant to plants, but its addition can increase decomposition and change invertebrate community structure in Na-poor tropical forests. Here we used synthetic urine to separate the effects of Na from urine’s other nutrients and contrasted their roles in promoting decomposition and detritivore recruitment in both a Na-poor inland Ecuadorian and Na-rich coastal Panamanian tropical forest. After 2 days, invertebrate communities did not vary among +Na, H2O, Urine+Na, and Urine−Na treatments. But after 2 weeks, Ecuador wood, but not cellulose, decomposition was twofold higher on Urine+Na and +Na plots compared to H2O and Urine−Na plots accompanied by >20-fold increases in termite abundance on these plots. Panama, in contrast, showed no effect of Na on decomposition. In both forests, plots fertilized with urine had nearly twofold decrease in detritivores after 2 weeks that was likely a shock effect from ammonification. Moreover, the non-Na nutrients in urine did not enhance decomposition at this time scale. On control plots, Panama had higher decomposition rates for both cellulose and wood than Ecuador, but the addition of Na in Ecuador alleviated these differences. These results support the hypothesis that in Na-poor tropical forests, urine can enhance wood decomposition and generate an important source of heterogeneity in the abundance and activity of brown food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Arms K, Feeny P, Lederhouse RC (1974) Sodium: stimulus for puddling behavior by tiger swallowtail butterflies, Papilio glaucus. Science 185:372–374

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  • Barrows EM (1974) Aggregation behavior and response to sodium chloride in females of a solitary bee, Augochlora pura (Hymenoptera: Halictidae). Fla Entomol 57:189–193

    Article  CAS  Google Scholar 

  • Bestelmeyer BT, Agosti D, Alonso LE, Brandao CRF, Brown WL, Delabie JAC, Silvestre R (2000) Field techniques for the study of ground dwelling ants–an overview, description, and evaluation. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian, Washington, DC, pp 122–144

    Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  CAS  PubMed  Google Scholar 

  • Boiangiu CD, Jayamani E, Brügel D, Herrmann G, Kim J, Forzi L, Hedderich R, Vgenopoulou I, Pierik AJ, Steuber J, Buckel W (2005) Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J Mol Microbiol Biotechnol 10:105–119

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Bursey RG, Watson ML (1983) The effect of sodium restriction during gestation on offspring brain development in rats. Am J Clin Nutr 37:43–51

    CAS  PubMed  Google Scholar 

  • Clarke BC, Berry HH (1992) Water flux in free-living lions (Panthera leo) in the Etosha National Park, Namibia. J Mammal 73:552–558

    Article  Google Scholar 

  • Clay NA, Yanoviak SP, Kaspari M (2014) Short-term sodium inputs attract microbi-detritivores and their predators. Soil Biol Biochem 75:248–253

    Article  CAS  Google Scholar 

  • Damuth J (1981) Population density and body size in mammals. Science 290:699–700

    Google Scholar 

  • Damuth J (2007) A macroevolutionary explanation for energy equivalence in the scaling of body size and population density. Am Nat 169:621–631

    Article  PubMed  Google Scholar 

  • Dos Santos Neves N, Feer F, Salmon S, Chateil C, Ponge J (2010) The impact of red howler monkey latrines on the distribution of main nutrients and on topsoil profiles in a tropical rain forest. Austral Ecol 35:549–559

    Article  Google Scholar 

  • Drake DC, Smith JV, Naiman RJ (2005) Salmon decay and nutrient contributions to riparian forest soils. Northwest Sci 79:61–71

    CAS  Google Scholar 

  • Dudley R, Kaspari M, Yanoviak SP (2012) Lust for salt in the Western Amazon. Biotropica 44:6–9

    Article  Google Scholar 

  • Ebenman B, Hendenström A, Wennergren U, Ekstam B, Landin J, Tyberg T (1995) The relationship between population density and body size: the role of extinction and mobility. Oikos 73:225–230

    Article  Google Scholar 

  • Edwards NA (1975) Scaling of renal functions in mammals. Comp Biochem Physiol 52A:63–66

    Article  Google Scholar 

  • Eldridge DJ, James AI (2009) Soil-disturbance by native animals plays a critical role in maintaining healthy Australian landscapes. Ecol Manag Restor 10:27–34

    Article  Google Scholar 

  • Feeley KJ (2005) The role of clumped defecation in the spatial distribution of soil nutrients and the availability of nutrients for plant uptake. J Trop Ecol 21:99–102

    Article  Google Scholar 

  • Fittkau EJ, Klinge H (1973) On biomass and trophic structure of the Central Amazonian rainforest ecosystem. Biotropica 5:2–14

    Article  Google Scholar 

  • Fortin D, Beyer HL, Boyce MS, Smith DW, Duchesne T, Mao JS (2005) Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86:1320–1330

    Article  Google Scholar 

  • Ganguli MC, Smith ID, Hanson LE (1969) Sodium metabolism and its requirement during reproduction in female rats. J Nutr 99:225–233

    CAS  PubMed  Google Scholar 

  • Geerling JC, Loewy AD (2008) Central regulation of sodium appetite. Exp Physiol 93:178–209

    Article  Google Scholar 

  • Habeck CW, Meehan TD (2008) Mass invariance of population nitrogen flux by terrestrial mammalian herbivores: an extension of the energetic equivalence rule. Ecol Lett 11:898–903

    Article  PubMed  Google Scholar 

  • Harmon ME, Nadelhoffer KJ, Blair JM (1999) Measuring decomposition, nutrient turnover, and stores in plant litter. In: Robertson GP, Bledsoe CS, Coleman DC, Sollins P (eds) Standard soil methods for long term ecological research. Oxford University Press, New York, pp 202–240

    Google Scholar 

  • Hawlena D, Strickland MS, Bradford MA, Schmitz OJ (2012) Fear of predation slows plant-litter decomposition. Science 336:1434–1438

    Article  CAS  PubMed  Google Scholar 

  • InfoNatura (2007) Animals and ecosystems of Latin America, version 5.0 (web application). NatureServe, Arlington, VA. Available: http://www.natureserve.org/infonatura. Accessed 10 June 2013

  • Jones DT, Eggleton P (2011) Global biogeography of termites: a compilation of sources. In: Jones DT, Eggleton P, Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Amsterdam, pp 477–498

    Google Scholar 

  • Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008a) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43

    PubMed  Google Scholar 

  • Kaspari M, Yanoviak SP, Dudley R (2008b) On the biogeography of salt limitation: a study of ant communities. Proc Natl Acad Sci USA 105:17848–17851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaspari M, Yanoviak SP, Dudley R, Yuan M, Clay NA (2009) Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. Proc Natl Acad Sci USA 106:19405–19409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaspari M, Chang C, Weaver J (2010) Salted roads and sodium limitation in a northern forest ant community. Ecol Entomol 35:543–548

    Article  Google Scholar 

  • Kaspari M, Clay NA, Donoso DA, Yanoviak SP (2014) Sodium fertilization increases termites and enhances decomposition in an Amazonian forest. Ecology 95(4):795–800. doi:10.1890/13-1274.1

    Article  PubMed  Google Scholar 

  • Korning J, Thomsen K, Dalsgaard K, Nørnberg P (1994) Characters of three Udults and their relevance to the composition and structure of virgin rain forest of Amazonian Ecuador. Geoderma 63:145-164

    Article  CAS  Google Scholar 

  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A (1993) A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25:130–150

    Article  Google Scholar 

  • Lohm U, Lundkvist H, Persson T, Wirén A (1977) Effects of nitrogen fertilization on the abundance of enchytraeids and microarthropods in Scots pine forests. Stud For Suec 140:1–23

    Google Scholar 

  • Marshall VG (1974) Seasonal and vertical distribution of soil fauna in a thinned and urea-fertilized Douglas fir forest. Can J Soil Sci 54:491–500

    Article  CAS  Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data, version 4.14. MjM Software, Glenedon Beach

    Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM (1997a) Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278:1798–2000

    Article  CAS  PubMed  Google Scholar 

  • McNaughton SJ, Zuniga G, McNaughton MM, Banyikwa FF (1997b) Ecosystem catalysis: soil urease activity and grazing in the Serengeti ecosystem. Oikos 80:467–469

    Article  CAS  Google Scholar 

  • National Atmospheric Deposition Program (2008) Sodium ion wet deposition. Champaign, IL

    Google Scholar 

  • Nee S, Read AF, Greenwood JJD, Harvey PH (1991) The relationship between abundance and body size in British birds. Nature 351:312–313

    Article  Google Scholar 

  • Persson I-L, Danell K, Bergström R (2000) Disturbance by large herbivores in boreal forests with special reference to moose. Ann Zool Fenn 37:251–263

    Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Robertson GP, Vitousek PM (1981) Nitrification potentials in primary and secondary succession. Ecology 62:376–386

    Article  Google Scholar 

  • Sayer EJ, Wright J, Tanner EVJ, Yavitt JB, Harms KE, Powers JS, Kaspari M, Garcia MN, Turner BL (2012) Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15:387–400

    Article  CAS  Google Scholar 

  • Schulkin J (1991) Sodium hunger: the search for a salty taste. University Press, Cambridge

    Google Scholar 

  • Shand CA, Williams BL, Smith S, Young ME (2000) Temporal changes in C, P and N concentrations in soil solution following application of synthetic sheep urine to a soil under grass. Plant Soil 222:1–13

    Article  CAS  Google Scholar 

  • Stallard RF, Edmond JM (1981) Geochemistry of the Amazon. 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J Geophys Res 86:9844–9858

    Article  CAS  Google Scholar 

  • Stamp NE, Harmon GD (1991) Effect of potassium and sodium on fecundity and survivorship of Japanese beetles. Oikos 62:299–305

    Article  Google Scholar 

  • Steinauer EM, Collins SL (1995) Effects of urine deposition on small-scale patch structure in prairie vegetation. Ecology 76:1195–1205

    Article  Google Scholar 

  • Steinauer EM, Collins SL (2001) Source feedback loops in ecological hierarchies following urine deposition in tallgrass prairie. Ecology 82:1319–1329

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Tuomisto H, Poulsen AD, Ruokolainen K, Moran RC, Quintana C, Celi J, Cañas G (2003) Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian Amazonia. Ecol Appl 13:352–371

    Article  Google Scholar 

  • Vormisto J, Svenning J-C, Hall P, Balslev B (2004) Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. J Ecol 92:577–588

    Article  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Waring BG (2012) A meta-analysis of climatic and chemical controls on leaf litter decay rates in tropical forests. Ecosystems 15:999–1009

    Article  CAS  Google Scholar 

  • Weiss MR (2006) Defecation behavior and ecology of insects. Annu Rev Entomol 51:635–661

    Article  CAS  PubMed  Google Scholar 

  • White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, Berlin

    Book  Google Scholar 

  • Wieder RK, Wright SJ (1995) Tropical forest litter dynamics and dry season irrigation on Barro Colorado Island, Panama. Ecology 76:1971–1979

    Article  Google Scholar 

  • Windsor DM, Rand AS, Rand WM (1990) Caraterísticas de la precipitatción en la isla de Barro Colorado. In: Leigh EG, Rand AS, Windsor DM (eds) Ecología de un bosque tropical: ciclos estacionales y cambios a largo plazo. Smithsonian Tropical Research Institute, Balboa, pp 53–71

    Google Scholar 

  • Wright JP, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96–101

    Article  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–1625

    Article  PubMed  Google Scholar 

  • Yoshimura T, Kagemori N, Kawai S, Sera K, Futatsugawa S (2002) Trace elements in termites by PIXE analysis. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater At 189:450–453

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank D. Flatt, K. Tholt, J. Burks and D. Rinehart for help in the laboratory. Special thanks to N. Velasco and T. Zumbusch, who were invaluable in the field. We also thank Oris Acevedo and Belkys Jiménez and Smithsonian Tropical Research Institute staff on BCI, Panama, and ANAM for permit SEX/AP-3-09. Miguel Rodriquez and Alvaro Barragán provided logistical help in Quito and Yasuni. We thank the Ministerio de Ambiente del Ecuador for research permit 0020-2010-IC-FUN-DPO-MA. All experiments comply with the current laws of the countries in which the experiments were performed. Funding was provided from NSF DEB-0948762 (principal investigator M. Kaspari).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie A. Clay.

Additional information

Communicated by Stefan Scheu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clay, N.A., Donoso, D.A. & Kaspari, M. Urine as an important source of sodium increases decomposition in an inland but not coastal tropical forest. Oecologia 177, 571–579 (2015). https://doi.org/10.1007/s00442-014-3183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3183-4

Keywords

Navigation