Skip to main content
Log in

Trait-mediated indirect effects, predators, and disease: test of a size-based model

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Increasing prevalence of wildlife disease accentuates the need to uncover drivers of epidemics. Predators can directly influence disease prevalence via density-mediated effects (e.g., culling infected hosts leading to reduced disease prevalence). However, trait-mediated indirect effects (TMIEs) of predators can also strongly influence disease—but predicting a priori whether TMIEs should increase or decrease disease prevalence can be challenging, especially since a single predator may elicit responses that have opposing effects on disease prevalence. Here, we pair laboratory experiments with a mechanistic, size-based model of TMIEs in a zooplankton host, fungal parasite, multiple predator system. Kairomones can either increase or decrease body size of the host Daphnia, depending on the predator. These changes in size could influence key traits of fungal disease, since infection risk and spore yield increase with body size. For six host genotypes, we measured five traits that determine an index of disease spread (R 0). Although host size and disease traits did not respond to kairomones produced by the invertebrate predator Chaoborus, cues from fish reduced body size and birth rate of uninfected hosts and spore yield from infected hosts. These results support the size model for fish; the birth and spore yield responses should depress disease spread. However, infection risk did not decrease with fish kairomones, thus contradicting predictions of the size model. Exposure to kairomones increased per spore susceptibility of hosts, countering size-driven decreases in exposure to spores. Consequently, synthesizing among the relevant traits, there was no net effect of fish kairomones on the R 0 metric. This result accentuates the need to integrate the TMIE-based response to predators among all key traits involved in disease spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrams P, Menge BA, Mittelbach GG, Spiller D, Yodzis P (1996) The role of indirect effects in food webs. In: Polis GA, Winemiller KO (eds) Food webs: integration of patterns and dynamic. Chapman and Hall, New York, pp 371–395

    Chapter  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Boersma M, Spaak P, De Meester L (1998) Predator-mediated plasticity in morphology, life history, and behavior in Daphnia: the uncoupling of responses. Am Nat 152:237–248

    Article  PubMed  CAS  Google Scholar 

  • Boonstra R, Hik D, Singleton GR, Tinnikov A (1998) The impact of predator-induced stress on the snowshoe hare cycle. Ecol Monogr 79:371–394

    Article  Google Scholar 

  • Cáceres CE, Knight CJ, Hall SR (2009) Predator-spreaders: predation can enhance parasite success in a planktonic host-parasite system. Ecology 90:2850–2858

    Article  PubMed  Google Scholar 

  • Choisy M, Rohani P (2006) Harvesting can increase severity of wildlife disease epidemics. Proc R Soc B Biol Sci 273:2025–2034

    Article  Google Scholar 

  • Civitello DJ, Forys P, Johnson AP, Hall SR (2012) Chronic contamination decreases disease spread: a Daphnia-fungus-copper case study. Proc R Soc B Biol Sci 279:3146–3153

    Article  Google Scholar 

  • Civitello DJ, Penczykowski RM, Hite JL, Duffy MA, Hall SR (2013) Potassium stimulates fungal epidemics in Daphnia by increasing host and parasite reproduction. Ecology 94:380–388

    Google Scholar 

  • Coslovsky M, Richner H (2011) Predation risk affects offspring growth via maternal effects. Funct Ecol 25:878–888

    Article  Google Scholar 

  • Daly EW, Johnson PTJ (2011) Beyond immunity: quantifying the effects of host anti-parasite behavior on parasite transmission. Oecologia 165:1043–1050

    Article  PubMed  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Wildlife ecology: emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449

    Article  PubMed  CAS  Google Scholar 

  • Decaestecker E, De Meester L, Ebert D (2002) In deep trouble: habitat selection constrained by multiple enemies in zooplankton. Proc Natl Acad Sci 99:5481–5485

    Article  PubMed  CAS  Google Scholar 

  • Dobson AP, Foufopoulos J (2001) Emerging infectious pathogens in wildlife. Philos Trans R Soc Lond B 356:1001–1012

    Article  CAS  Google Scholar 

  • Duffy MA, Hall SR (2008) Selective predation and rapid evolution can jointly dampen effects of virulent parasites on Daphnia populations. Am Nat 171:499–510

    Article  PubMed  Google Scholar 

  • Duffy MA, Sivars-Becker L (2007) Rapid evolution and ecological host-parasite dynamics. Ecol Lett 10:44–53

    Article  PubMed  Google Scholar 

  • Duffy MA, Hall SR, Tessier AJ, Huebner M (2005) Selective predators and their parasitized prey: are epidemics in zooplankton under top-down control? Limnol Oceanogr 50:412–420

    Article  Google Scholar 

  • Duffy MA, Housley JM, Penczykowski RM, Cáceres CE, Hall SR (2011) Unhealthy herds: indirect effects of predators enhance two drivers of disease spread. Funct Ecol 25:945–953

    Article  Google Scholar 

  • Dussaubat C, Brunet J-L, Higes M, Colbourne JK, Lopez J, Choi J-H, Martín-Hernádez R, Botías C, Cousin M, McDonnell C, Bonnet M, Belzunces LP, Moritz RF, Le Conte Y, Alaux C (2012) Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS One 7(5):e37017. doi:10.1371/journal.pone.0037017

    Article  PubMed  CAS  Google Scholar 

  • Ebert D (2005) Ecology, epidemiology, and evolution of parasitism in Daphnia [Internet]. National Center for Biotechnology Information, National Library of Medicine (US), Bethesda, MD. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books

  • Hall SR, Duffy MA, Cáceres CE (2005) Selective predation and productivity jointly drive complex behavior in host-parasite systems. Am Nat 165:70–81

    Article  PubMed  Google Scholar 

  • Hall SR, Tessier AJ, Duffy MA, Huebner M, Cáceres CE (2006) Warmer does not have to mean sicker: temperature and predators can jointly drive timing of epidemics. Ecology 87:1684–1695

    Article  PubMed  Google Scholar 

  • Hall SR, Sivars-Becker L, Becker C, Duffy MA, Tessier AJ, Cáceres CE (2007) Eating yourself sick: transmission of disease as a function of foraging ecology. Ecol Lett 10:207–218

    Article  PubMed  Google Scholar 

  • Hall SR, Becker CR, Simonis JL, Duffy MA, Tessier AJ, Cáceres CE (2009a) Friendly competition: evidence for a dilution effect among competitors in a planktonic host-parasite system. Ecology 90:791–801

    Article  PubMed  Google Scholar 

  • Hall SR, Knight CJ, Becker CR, Duffy MA, Tessier AJ, Cáceres CE (2009b) Quality matters: resource quality for hosts and the timing of epidemics. Ecol Lett 12:118–128

    Article  PubMed  Google Scholar 

  • Hall SR, Simonis JL, Nisbet RM, Tessier AJ, Cáceres CE (2009c) Resource ecology of virulence in a planktonic host-parasite system: an explanation using dynamic energy budgets. Am Nat 174:149–162

    Article  PubMed  Google Scholar 

  • Hall SR, Becker C, Duffy MA, Cáceres CE (2010a) Variation in resource acquisition and use among host clones creates key epidemiological trade-offs. Am Nat 176:557–565

    Article  PubMed  Google Scholar 

  • Hall SR, Smyth R, Becker CR, Duffy MA, Knight CJ, MacIntyre S, Tessier AJ, Cáceres CE (2010b) Why are Daphnia in some lakes sicker? Disease ecology, habitat structure, and the plankton. Bioscience 60:363–375

    Article  Google Scholar 

  • Hall SR, Becker C, Duffy MA, Cáceres CE (2012) A power-efficiency tradeoff alters epidemiological relationships. Ecology 93:645–656

    Article  PubMed  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (1999) Emerging marine diseases—climate links and anthropogenic factors. Science 285:1505–1510

    Article  PubMed  CAS  Google Scholar 

  • Hatcher MJ, Dick JT, Dunn AM (2006) How parasites affect interactions between competitors and predators. Ecol Lett 9:1–19

    Article  Google Scholar 

  • Hawlena D, Schmitz OJ (2010) Physiological stress as a fundamental mechanism linking predation to ecosystem function. Am Nat 176:537–556

    Article  PubMed  Google Scholar 

  • Hawlena D, Abramsky Z, Bouskila A (2010) Bird predation alters infestation of desert lizards by parasitic mites. Oikos 119:730–736

    Article  Google Scholar 

  • Hesse O, Engelbrecht W, Laforsch C, Wolinska J (2012) Fighting parasites and predators: how to deal with multiple threats? BMC Ecol 12:12. doi:10.1186/1472-6785-12-12

    Article  PubMed  Google Scholar 

  • Holt RD, Roy M (2007) Predation can increase the prevalence of infectious disease. Am Nat 169:690–699

    Article  PubMed  Google Scholar 

  • Johnson PTJ, Stanton DE, Preu ER, Forshay KJ, Carpenter SR (2006) Dining on disease: how interactions between infection and environment affect predation risk. Ecology 87:1973–1980

    Article  PubMed  Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    Article  PubMed  CAS  Google Scholar 

  • Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Bogich T, Ostfeld RS (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick AM (2011) Globalization, land use, and the emergence of West Nile virus. Science 334:323–327

    Article  PubMed  CAS  Google Scholar 

  • Kooijman SALM (1993) Dynamic energy budgets in biological systems. Cambridge University Press, New York

    Google Scholar 

  • Lass S, Bittner K (2002) Facing multiple enemies: parasitised hosts respond to predator kairomones. Oecologia 132:344–349

    Article  Google Scholar 

  • Lynch M, Spitze K, Crease T (1989) The distribution of life-history variation in the Daphnia pulex complex. Evolution 43:1724–1736

    Article  Google Scholar 

  • Machacek J (1995) Inducibility of life-history changes by fish kairomone in various developmental stages of Daphnia. J Plankton Res 17:1513–1520

    Article  Google Scholar 

  • McCauley SJ, Rowe L, Fortin M-J (2011) The deadly effects of “nonlethal” predators. Ecology 92:2043–2048

    Article  PubMed  Google Scholar 

  • Noonburg EG, Nisbet RM (2005) Behavioral and physiological responses to food availability and predation risk. Evol Ecol Res 7:89–104

    Google Scholar 

  • Ostfeld RS, Holt RD (2004) Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front Ecol Environ 2:13–20

    Article  Google Scholar 

  • Overholt EP, Hall SR, Williamson CE, Meikle CK, Duffy MA, Cáceres CE (2012) Solar radiation decreases parasitism in Daphnia. Ecol Lett 15:47–54

    Article  PubMed  Google Scholar 

  • Packer C, Holt RD, Hudson PJ, Lafferty KD, Dobson AP (2003) Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol Lett 6:797–802

    Article  Google Scholar 

  • Pauwels K, Stoks R, De Meester L (2010) Enhanced anti-predator defense in the presence of food stress in the water flea Daphnia magna. Funct Ecol 24:322–329

    Article  Google Scholar 

  • Peacor SD, Werner EE (2001) The contribution of trait-mediated indirect effects to the net effects of a predator. Proc Natl Acad Sci 98:3904–3908

    Article  PubMed  CAS  Google Scholar 

  • Peckarsky BL, Abrams PA, Bolnick DI, Dill LM, Grabowski JH, Luttbeg B, Orrock JL, Peacor SD, Preisser EL, Schmitz OJ, Trussell GC (2008) Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions. Ecology 89:2416–2425

    Article  PubMed  Google Scholar 

  • Pijanowska J, Dawidowicz P, Howe A, Weider LJ (2006) Predator induced shifts in Daphnia life-histories under different food regimes. Arch Hydrobiol 167:37–54

    Article  Google Scholar 

  • Raffel TR, Hoverman JT, Halstead NT, Michel PJ, Rohr JR (2010) Parasitism in a community context: trait-mediated interactions with competition and predation. Ecology 91:1900–1907

    Article  PubMed  Google Scholar 

  • Ramirez RA, Snyder WE (2009) Scared sick? Predator-pathogen facilitation enhances exploitation of a shared resource. Ecology 90:2832–2839

    Article  PubMed  Google Scholar 

  • Reede T (1995) Life history shifts in response to different levels of fish kairomones in Daphnia. J Plankton Res 17:1661–1667

    Article  Google Scholar 

  • Reissen HP (1999) Chaoborus predation and delayed reproduction in Daphnia: a demographic modeling approach. Evol Ecol 13:339–363

    Article  Google Scholar 

  • Rigby MC, Jokela J (2000) Predator avoidance and immune defence: costs and trade-offs in snails. Proc R Soc Lond B 267:171–176

    Article  CAS  Google Scholar 

  • Rinke K, Hulsmann S, Mooij WM (2008) Energetic costs, underlying resource allocation patterns, and adaptive value of predator-induced life-history shifts. Oikos 117:273–285

    Article  Google Scholar 

  • Rohrlack KC, Dittmann E, Norgueira I, Vasconcelos V, Börner T (2005) Ingestion of microcystins by Daphnia: intestinal uptake and toxic effects. Limnol Oceanogr 50:440–448

    Article  CAS  Google Scholar 

  • Sakwinska O (2002) Response to fish kairomone in Daphnia galeata life history traits relies on shift to earlier instar at maturation. Oecologia 131:409–417

    Article  Google Scholar 

  • Schmitz OJ (2008) Effects of predator hunting mode on grassland ecosystem function. Science 319:952–954

    Article  PubMed  CAS  Google Scholar 

  • Schmitz OJ, Suttle KB (2001) Effects of top predator species on direct and indirect interactions in a food web. Ecology 82:2072–2081

    Article  Google Scholar 

  • Schmitz OJ, Beckerman AP, O’Brian KM (1997) Behaviorally-mediated trophic cascades: the effects of predation risk on food web interactions. Ecology 78:1388–1399

    Article  Google Scholar 

  • Sell AF (2000) Morphological defenses induced in situ by the invertebrate predator Chaoborus: comparison of responses between Daphnia pulex and D. rosea. Oecologia 125:150–160

    Article  Google Scholar 

  • Stibor H, Lüning J (1994) Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea, Cladocera). Funct Ecol 8:98–101

    Article  Google Scholar 

  • Thiemann GW, Wassersug RJ (2000) Patterns and consequences of behavioural responses to predators and parasites in Rana tadpoles. Biol J Linn Soc 71:513–528

    Article  Google Scholar 

  • Tollrian R (1993) Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: morphological effects of Chaoborus kairomone concentration and their quantification. J Plankton Res 15:1309–1318

    Article  Google Scholar 

  • Weber A, Declerck S (1997) Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variability and evolutionary potential. Hydrobiologia 360:89–99

    Article  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

  • Yin M, Laforsch C, Lohr J, Wolinska J (2011) Predator-induced defense makes Daphnia more vulnerable to parasites. Evolution 65:1482–1488

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation grants DEB 0613510, 0614316, 1120804, and 1120316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla E. Cáceres.

Additional information

Communicated by Steven Kohler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, C.R., Pinkowski, M., Hall, S.R. et al. Trait-mediated indirect effects, predators, and disease: test of a size-based model. Oecologia 173, 1023–1032 (2013). https://doi.org/10.1007/s00442-013-2673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2673-0

Keywords

Navigation