Skip to main content
Log in

The demographic drivers of local population dynamics in two rare migratory birds

  • Population ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The exchange of individuals among populations can have strong effects on the dynamics and persistence of a given population. Yet, estimation of immigration rates remains one of the greatest challenges for animal demographers. Little empirical knowledge exists about the effects of immigration on population dynamics. New integrated population models fitted using Bayesian methods enable simultaneous estimation of fecundity, survival and immigration, as well as the growth rate of a population of interest. We applied this novel analytical framework to the demography of two populations of long-distance migratory birds, hoopoe Upupa epops and wryneck Jynx torquilla, in a study area in south-western Switzerland. During 2002–2010, the hoopoe population increased annually by 11%, while the wryneck population remained fairly stable. Apparent juvenile and adult survival probability was nearly identical in both species, but fecundity and immigration were slightly higher in the hoopoe. Hoopoe population growth rate was strongly correlated with juvenile survival, fecundity and immigration, while that of wrynecks strongly correlated only with immigration. This indicates that demographic components impacting the arrival of new individuals into the populations were more important for their dynamics than demographic components affecting the loss of individuals. The finding that immigration plays a crucial role in the population growth rates of these two rare species emphasizes the need for a broad rather than local perspective for population studies, and the development of wide-scale conservation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abadi F, Gimenez O, Arlettaz R, Schaub M (2010a) An assessment of integrated population models: bias, accuracy, and violation of the assumption of independence. Ecology 91:7–14

    Article  PubMed  Google Scholar 

  • Abadi F, Gimenez O, Ullrich B, Arlettaz R, Schaub M (2010b) Estimation of immigration rate in integrated population model. J Appl Ecol 47:393–400

    Article  Google Scholar 

  • Arlettaz R, Schaad M, Reichlin TR, Schaub M (2010a) Impact of weather and climate variation on hoopoe reproductive ecology and population growth. J Ornithol 151:889–899

    Article  Google Scholar 

  • Arlettaz R, Schaub M, Fournier J, Reichlin TS, Sierro A, Watson JEM, Braunisch V (2010b) From publications to public actions: when conservation biologists bridge the gap between research and implementation. Bioscience 60:835–842

    Article  Google Scholar 

  • Bächler E, Hahn S, Schaub M, Arlettaz R, Jenni L, Fox WJ, Afanasyev V, Liechti F (2010) Year-round tracking of small trans-Saharan migrants using light-level geolocators. PLoS ONE 5:e9566

    Article  PubMed  Google Scholar 

  • Baillie SR, Sutherland WJ, Freeman SN, Gregory RD, Paradis E (2000) Consequences of large-scale processes for the conservation of bird populations. J Appl Ecol 37:88–102

    Article  Google Scholar 

  • Baillie SR, Brooks SP, King R, Thomas L (2008) Using a state-space model of the British song thrush Turdus philomelos population to diagnose the causes of a population decline. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Environmental and Ecological Statistics, vol 3. Springer, New York, pp 541–561

    Google Scholar 

  • Besbeas P, Freeman SN, Morgan BJT, Catchpole EA (2002) Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58:540–547

    Article  PubMed  CAS  Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455

    Article  Google Scholar 

  • Brooks SP, King R, Morgan BJT (2004) A Bayesian approach to combining animal abundance and demographic data. Anim Biodiv Conserv 27:515–529

    Google Scholar 

  • Burnham KP, White GC (2002) Evaluation of some random effects methodology applicable to bird ringing data. J Appl Stat 29:245–264

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Cave VM, King R, Freeman SM (2009) An integrated population model from constant effort bird-ringing data. J Agric Biol Envir Stat 15:119–137

    Article  Google Scholar 

  • Choquet R, Lebreton J-D, Gimenez O, Reboulet A-M, Pradel R (2009) U-CARE: utilities for performing goodness-of-fit tests and manipulating capture–recapture data. Ecography 32:1071–1074

    Article  Google Scholar 

  • De Valpine P, Hastings A (2002) Fitting population models incorporating process noise and observation error. Ecol Monogr 72:57–76

    Article  Google Scholar 

  • Development Core Team R (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Dias PC (1996) Sources and sinks in population biology. Trends Ecol Evol 11:326–330

    Article  PubMed  CAS  Google Scholar 

  • Doncaster CP, Clobert J, Doligez B, Gustafsson L, Danchin E (1997) Balanced dispersal between spatially varying local populations: an alternative to the source-sink model. Am Nat 150:425–445

    Article  PubMed  CAS  Google Scholar 

  • Ezard THG, Becker PH, Coulson T (2006) The contributions of age and sex to variation in common tern population growth rate. J Anim Ecol 75:1379–1386

    Article  PubMed  CAS  Google Scholar 

  • Fournier J, Arlettaz R (2001) Food provision to nestlings in the hoopoe Upupa epops: implications for the conservation of a small endangered population in the Swiss Alps. Ibis 143:2–10

    Article  Google Scholar 

  • Franklin AB, Gutiérrez RJ, Nichols JD, Seamans ME, White GC, Zimmerman GS, Hines JE, Munton TE, LaHaye WS, Blakesly JA, Steger GN, Noon BR, Shaw DWH, Kean JJ, McDonald TL, Britting S (2004) Population dynamics of California spotted owl (Strix occidentalis occidentalis): a meta-analysis. Ornithol Monogr 54:1–54

    Google Scholar 

  • Freeman SN, Robinson RA, Clark JA, Griffin BM, Adams SY (2007) Changing demography and population decline in the common starling Sturnus vulgaris: a multisite approach to integrated population monitoring. Ibis 149:587–596

    Article  Google Scholar 

  • Freitag A (1996) Le régime alimentaire du Torcol fourmilier (Jynx torquilla) en Valais (Suisse). Nos Oiseaux 43:497–512

    Google Scholar 

  • Gaillard JM, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393

    Article  Google Scholar 

  • Geiser S, Arlettaz R, Schaub M (2008) Impact of weather variation on feeding behaviour, nestling growth and brood survival in Wrynecks Jynx torquilla. J Ornithol 149:597–606

    Article  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain monte carlo in practice. Chapman and Hall, London

    Google Scholar 

  • Glutz von Blotzheim UN, Bauer KM (1980) Handbuch der Vögel Mitteleuropas, vol 9. Akademischer, Wiesbaden, Frankfurt am Main

    Google Scholar 

  • Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21

    Article  Google Scholar 

  • Jones J, Doran PJ, Holmes RT (2007) Spatial scaling of avian population dynamics: population abundance, growth rate, and variability. Ecology 88:2505–2515

    Article  PubMed  Google Scholar 

  • Keller V, Zbinden N, Schmid N, Volet B (2001) Rote Liste der gefährdeten Brutvogelarten der Schweiz. BUWAL- Reihe Vollzug Umwelt, 57. Bundesamt für Umwelt, Wald und Landschaft (BUWAL) and Schweizerische Vogelwarte Sempach

  • Kéry M, Schaub M (2011) Bayesian population analysis using WinBUGS–a hierarchical perspective. Academic, Burlington

    Google Scholar 

  • Kéry M, Royle JA, Schmid H, Schaub M, Volet B, Häfliger G, Zbinden N (2010) Correcting population trend estimates from opportunistic observations for observation effort using site-occupancy modeling. Conserv Biol 24:1388–1397

    Article  PubMed  Google Scholar 

  • Lambrechts MM, Blondel J, Caizergues A, Dias PC, Pradel R, Thomas DW (1999) Will estimates of lifetime recruitment of breeding offspring on small-scale study plots help us to quantify processes underlying adaptation? Oikos 86:147–151

    Article  Google Scholar 

  • Lampila S, Orell M, Belda E, Koivula K (2006) Importance of adult survival, local recruitment and immigration in a declining boreal forest passerine, the willow tit Parus montanus. Oecologia 148:405–413

    Article  PubMed  Google Scholar 

  • Lande R, Engen S, Saether BE (1999) Spatial scale of population synchrony: environmental correlation versus dispersal and density regulation. Am Nat 154:271–281

    Article  PubMed  Google Scholar 

  • Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modelling survival and testing biological hypotheses using marked animals––a unified approach with case-studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS––a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Martín-Vivaldi M, Ruiz-Rodriguez M, Soler JJ, Peralta-Sanchez JM, Mendez M, Valdivia E, Martín-Platero AM, Martinez-Bueno M (2009) Seasonal, sexual and developmental differences in hoopoe Upupa epops preen gland morphology and secretions: evidence for a role of bacteria. J Avian Biol 40:191–205

    Article  Google Scholar 

  • McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140:1010–1027

    Article  Google Scholar 

  • Millar RB (2009) Comparison of hierarchical Bayesian models for over dispersed count data using DIC and Bayes’ factors. Biometrics 65:962–969

    Article  PubMed  Google Scholar 

  • Møller AP (2002) North Atlantic Oscillation (NAO) effects of climate on the relative importance of first and second clutches in a migratory passerine bird. J Anim Ecol 71:201–210

    Article  Google Scholar 

  • Murphy MT (2001) Habitat-specific demography of a long-distance, neotropical migrant bird, the Eastern Kingbird. Ecology 82:1304–1318

    Article  Google Scholar 

  • Newton I, Marquiss M (1986) Population regulation in Sparrowhawks. J Anim Ecol 55:463–480

    Article  Google Scholar 

  • Nichols JD, Hines JE, Lebreton J-D, Pradel R (2000) Estimation of contributions to population growth: a reverse-time capture–recapture approach. Ecology 81:3362–3376

    Google Scholar 

  • Nichols JD, Kendall WL, Hines JE, Spendelow JA (2004) Estimation of sex-specific survival from capture–recapture data when sex is not always known. Ecology 85:3192–3201

    Article  Google Scholar 

  • Norris K (2004) Managing threatened species: the ecological toolbox, evolutionary theory and declining-population paradigm. J Appl Ecol 41:413–426

    Article  Google Scholar 

  • O’Hara RB, Lampila S, Orell M (2009) Estimation of rates of births, deaths, and immigration from mark-recapture data. Biometrics 65:275–281

    Article  PubMed  Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536

    Article  Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ, Gregory RD (2000) Spatial synchrony in populations of birds: effects of habitat, population trend and spatial ecology. Ecology 81:2112–2125

    Article  Google Scholar 

  • Reichlin TS, Schaub M, Menz MHM, Mermod M, Portner P, Arlettaz R, Jenni L (2009) Migration patterns of hoopoe Upupa epops and wryneck Jynx torquilla: an analysis of European ring recoveries. J Ornithol 150:393–400

    Article  Google Scholar 

  • Reichlin TS, Hobson KA, Wassenaar LI, Schaub M, Tolkmitt D, Becker D, Jenni L, Arlettaz R (2010) Migratory connectivity in a declining bird species: using feather isotopes to inform demographic modelling. Divers Distrib 16:643–654

    Article  Google Scholar 

  • Reid JM, Bignal EM, Bignal S, McCracken DI, Monaghan P (2004) Identifying the demographic determinants of population growth rate: a case study on red-billed choughs Pyrrhocorax pyrrhocorax. J Anim Ecol 73:777–788

    Article  Google Scholar 

  • Robinson RA, Green RE, Baillie SR, Peach WJ, Thomson DL (2004) Demographic mechanisms of the population decline of the song thrush Turdus philomelos in Britain. J Anim Ecol 73:670–682

    Article  Google Scholar 

  • Royle JA, Kéry M (2007) A Bayesian state-space formulation of dynamic occupancy models. Ecology 88:1813–1823

    Article  PubMed  Google Scholar 

  • Saether BE, Bakke O (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653

    Google Scholar 

  • Saether BE, Engen S, Grotan V, Fiedler W, Matthysen E, Visser ME, Wright J, Møller AP, Adriaensen F, Van Balen H, Balmer D, Mainwaring MC, McCleery R, Pampus M, Winkel W (2007) The extended Moran effect and large-scale synchronous fluctuations in the size of great tit and blue tit populations. J Anim Ecol 76:315–325

    Article  PubMed  Google Scholar 

  • Schaub M, Abadi F (2011) Integrated population models: a novel analysis framework for deeper insights into population dynamics. J Ornithol. doi:10.1007/s10336-010-0632-7 (in press)

  • Schaub M, Kania W, Köppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J Anim Ecol 74:656–666

    Article  Google Scholar 

  • Schaub M, Ullrich B, Knötzsch G, Albrecht P, Meisser C (2006) Local population dynamics and the impact of scale and isolation: a study on different little owl populations. Oikos 115:389–400

    Article  Google Scholar 

  • Schaub M, Gimenez O, Sierro A, Arlettaz R (2007) Use of integrated modeling to enhance estimates of population dynamics obtained from limited data. Conserv Biol 21:945–955

    Article  PubMed  Google Scholar 

  • Schaub M, Aebischer A, Gimenez O, Berger S, Arlettaz R (2010a) Massive immigration balances high anthropogenic mortality in a stable eagle owl population: lessons for conservation. Biol Conserv 143:1911–1918

    Article  Google Scholar 

  • Schaub M, Martinez N, Tagmann-Ioset A, Weisshaupt N, Maurer ML, Reichlin TS, Abadi F, Zbinden N, Jenni L, Arlettaz R (2010b) Patches of bare ground as a staple commodity for declining ground-foraging insectivorous farmland birds. PLoS ONE 5:e13115

    Article  PubMed  Google Scholar 

  • Schorcht W, Bontadina F, Schaub M (2009) Variation of adult survival drives population dynamics in a migrating forest bat. J Anim Ecol 78:1182–1190

    Article  PubMed  Google Scholar 

  • Sim IMW, Graham WR, Ludwig SC, Grant MC, Reid JM (2011) Characterizing demographic variation and contributions to population growth rate in a declining population. J Anim Ecol 80:159–170

    Article  PubMed  Google Scholar 

  • Sirami C, Brotons L, Martin JL (2008) Spatial extent of bird species response to landscape changes: colonisation/extinction dynamics at the community-level in two contrasting habitats. Ecography 31:509–518

    Article  Google Scholar 

  • Siriwardena GM, Baillie SR, Wilson JD (1998) Variation in the survival rates of some British passerines with respect to their population trends on farmland. Bird Study 45:276–292

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B 64:583–616

    Article  Google Scholar 

  • Stacey PB, Taper M (1992) Environmental variation and the persistence of small populations. Ecol Appl 2:18–29

    Article  Google Scholar 

  • Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: a package for running WinBUGS from R. J Stat Softw 12:1–16

    Google Scholar 

  • Tucker GM, Heath MF (1994) Birds in Europe their conservation status. Birdlife International, Cambridge, UK

    Google Scholar 

  • Ward MP (2005) The role of immigration in the decline of an isolated migratory bird population. Conserv Biol 19:1528–1536

    Article  Google Scholar 

  • Zannèse A, Morellet N, Targhetta C, Coulon A, Fuser S, Hewison AJM, Ramanzin M (2006) Spatial structure of roe deer populations: towards defining management units at a landscape scale. J Appl Ecol 43:1087–1097

    Article  Google Scholar 

  • Zingg S, Arlettaz R, Schaub M (2010) Nest box design influences territory occupancy and reproduction in a declining, secondary cavity-breeding bird. Ardea 98:67–75

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Bermann, F. Biollaz, Y. Bötsch, C. Bueno, L. Dafond, S. Ehrenbold, K. Falsone, S. Geiser, J. Hellmann, J. Laesser, F. Leippert, M. Mermod, S. Mettaz, P. Mosimann-Kampe, P. Portner, M. Schaad, B. Schmid, A. Sierro, A. Tagmann-Ioset, M. Tschumi, N. Weisshaupt and S. Zingg for assisting with data collection. K. Berthier, S. Braaker, B. Hefti-Gautschi, G. Rigoli, and M. Schweizer helped with the genetic sex determination. H. Schmid provided wryneck occupancy data. S. Baillie, V. Cave, T. Cornulier, A. Lindén, B. Morgan and an anonymous reviewer provided very helpful comments on the manuscript. Ringing and blood sampling were performed under licences of the cantonal (Sion) and federal (Bern) governmental agencies. Financial support was provided by the Swiss National Science Foundation (Grant No. A0-107539 to Michael Schaub).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schaub.

Additional information

Communicated by Ola Olsson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

442_2011_2070_MOESM1_ESM.doc

Electronic supplementary material: Appendix S1. R and WinBUGS codes including data to fit the integrated population model. Appendix S2. R and WinBUGS codes to fit the dynamic occupancy model for the wryneck population survey. Appendix S3. Model selection result of sex-effects in demographic rates (recapture and apparent survival probabilities) of hoopoes and wrynecks. Table S1. Summary results of modelling survival and recapture probabilities of hoopoes using capture–recapture data from 2002–2010. Table S2. Summary results of modelling survival and recapture probabilities of wrynecks using capture–recapture data from 2002–2008. (DOC 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaub, M., Reichlin, T.S., Abadi, F. et al. The demographic drivers of local population dynamics in two rare migratory birds. Oecologia 168, 97–108 (2012). https://doi.org/10.1007/s00442-011-2070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2070-5

Keywords

Navigation