Skip to main content
Log in

Benchmarks in organism performance and their use in comparative analyses

  • Physiological ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Evaluating the response of organisms to stress assumes that functional benchmarks are available against which the response can be gauged, but this expectation remains unfulfilled for many taxa. As a result, attempts to describe the organismic effects of environmental degradation and physiological stress can prove misleading. Functional benchmarks and the effects of stress are particularly germane to coral reefs that globally are exposed to significant environmental challenges, and in this study, we compiled data on scleractinian corals to describe a reference against which stress responses can be gauged. Based on this construct, we tested the veracity of well-established contrasts––involving differences in physiological function among depths and families––to evaluate the capacity of available data to support synthetic analyses. Our analysis used 126 papers describing 37 genera, and at least 73 species, and described 13 traits, first independent of depth, and second, by depth. Data appropriate for these analyses were so sparse that depth- and family-level effects were inconspicuous, although the depth contrast revealed a decline in dark respiration and an increase in calcification (both normalized to area) in deeper water. Our analyses of scleractinian literature revealed limitations of the data available for synthetic analyses, as well for describing functional benchmarks within this taxon. We attribute some of these effects to differences in the physical environment under which measurements were made, and suspect that such problems are commonplace for other taxa. Dynamic Energy Budget (DEB) models provide one means to overcome some of these problems, and they can be used for any taxon to quantitatively summarize data for comparative analyses of stressor responses. The suitability of these models is illustrated for scleractinian corals by predicting from first principles the ratio of Symbiodinium to holobiont carbon and the respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allemand D, Ferrier-Pagès C, Furla P, Houlbreque F, Puverel S, Reynaud S, Tambutté (2004) Biomineralization in reef-building corals: from molecular mechanisms to environmental control. C R Palevol 3:453–467

    Article  Google Scholar 

  • Apprill AM, Gates RD (2007) Recognizing diversity in coral symbiotic dinoflagellate communities. Mol Ecol 16:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Est Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Baskett ML, Gaines SD, Nisbet RM (2009) Symbiont diversity may help coral reefs survive moderate climate change. Ecol Appl 19:3–17

    Article  PubMed  Google Scholar 

  • Baskett ML, Nisbet RM, Kappel CV, Mumby PJ, Gaines SD (2010) Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison. Glob Change Biol 16:1229–1246

    Article  Google Scholar 

  • Brown BE, Dunne RP, Ambarsari I, LeTissier MDA, Satapoomin U (1999) Seasonal fluctuations in environmental factors and variation in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species. Mar Ecol Prog Ser 191:53–69

    Article  Google Scholar 

  • Bruno JF, Edmunds PJ (2007) Clonal variation for phenotypic plasticity in the coral Madracis mirabilis. Ecology 78:2177–2190

    Google Scholar 

  • Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, Harvell CD, Sweatman H, Melendy AM (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol e124:1220–1227

    Google Scholar 

  • Budd AF, Romano SL, Smith ND, Barbeitos MS (2010) Rethinking phylogeny of scleractinian corals: a review of morphological and molecular data. Integr Comp Biol. doi:10.1093/icb/icq062

  • Buddemeier RW, Kinzie RA (1976) Coral growth. Oceanog Mar Biol Annu Rev 14:183–225

    Google Scholar 

  • Chalker BE (1981) Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. Mar Biol 63:135–141

    Article  Google Scholar 

  • Coles SL, Jokiel PL (1977) Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar Biol 43:209–216

    Article  CAS  Google Scholar 

  • Cook CB, D’Elia CF, Muller-Parker G (1988) Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Mar Biol 98:253–262

    Article  CAS  Google Scholar 

  • Davies PS (1980) Respiration in some Atlantic reef corals in relation to vertical distribution and growth form. Biol Bull 158:187–194

    Article  Google Scholar 

  • Dustan P (1975) Growth and form in the reef-building coral Montastrea annularis. Mar Biol 33:101–107

    Article  Google Scholar 

  • Dustan P (1982) Depth-dependent photoadaptation by zooxanthellae of the reef coral Montastrea annularis. Mar Biol 68:253–264

    Article  CAS  Google Scholar 

  • Edmunds PJ (2005) The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef. Oecologia 146:350–364

    Article  PubMed  Google Scholar 

  • Edmunds PJ, Gates RD (2003) Has coral bleaching delayed our understanding of fundamental aspects of coral-dinoflagellate symbioses? Bioscience 53:976–980

    Article  Google Scholar 

  • Edwards AJ, Clark S, Zahir H, Rajasuriya A, Naseer A, Rubens J (2001) Coral bleaching mortality on artificial and natural reefs in Maldives in 1998, sea surface temperature anomalies and initial recovery. Mar Poll Bull 42:7–15

    Article  CAS  Google Scholar 

  • Eynaud Y, Nisbet RM, Muller EB (2011) Impact of excess and harmful radiation on energy budgets in scleractinian corals. Ecol Model 222:1315–1322

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Finelli CM, Helmuth BST, Pentcheff ND, Wethey DS (2005) Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25:47–57

    Article  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue protein biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanog 45:677–685

    Article  CAS  Google Scholar 

  • Gladfelter EH (1983) Skeletal development in Acropora cervicornis II. Diel patterns of calcium carbonate accretion. Coral Reefs 2:91–100

    Article  Google Scholar 

  • Hatcher BG (1990) Coral reef primary productivity: a hierarchy of pattern and process. Trends Ecol Evol 5:149–155

    Article  PubMed  CAS  Google Scholar 

  • Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic, Orlando

    Google Scholar 

  • Helmuth BST, Kingsolver JG, Carrington E (2005) Biophysics, physiological ecology, and climate change: does mechanism matter? Annu Rev Physiol 67:177–201

    Article  PubMed  CAS  Google Scholar 

  • Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: biophysical and bio-optical signatures. Coral Reefs 28:179–195

    Article  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptations. Oxford University Press, Oxford

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PJ, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  PubMed  CAS  Google Scholar 

  • Houlbreque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17

    Article  PubMed  Google Scholar 

  • Huang HJ, Wang LH, Chen WNU, Fang LS, Chen CS (2008) Developmentally regulated localization of endosymbiotic dinoflagellates in different tissue layers of coral larvae. Coral Reefs 27:365–372

    Article  Google Scholar 

  • Huston MA (1985a) Patterns of species diversity on coral reefs. Annu Rev Ecol Syst 16:149–177

    Article  Google Scholar 

  • Huston MA (1985b) Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4:19–25

    Article  Google Scholar 

  • Idjadi JA, Edmunds PJ (2006) Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Mar Ecol Prog Ser 319:117–127

    Article  Google Scholar 

  • Jaubert J (1977) Light, metabolism and growth forms of the hermatypic scleractinian coral Synaraea convexa Verrill in the lagoon of Moorea (French Polynesia). Proc 3rd Int Coral Reef Symp 1: 483–488

  • Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 43:201–208

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jones AM, Berkelmans R, vanOppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc Lond B 275:1359–1365

    Article  CAS  Google Scholar 

  • Jury CP, Whitehead RF, Szmant AM (2010) Effects of variation in carbonate chemisty on the calcification rates of Madracis auretenra (=Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Glob Change Biol 16:1632–1644

    Article  Google Scholar 

  • Kawaguti S (1964) Zooxanthallae in the corals are intercellular symbionts. Proc Jpn Acad 7:545–548

    Google Scholar 

  • Kleypas JA, Langdon C (2006) Coral reefs and changing seawater carbonate chemistry. In: Phinney JT, Hoegh-Guldberg O, Kleypas J, Skirving W (eds) A strong coral reefs and climate change science and management. American Geophysical Union, Washington, pp 73–110

    Chapter  Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62

    Article  PubMed  Google Scholar 

  • Kooijman SALM (1993) Dynamic energy budgets in biological systems: theory and applications in ecotoxicology. Cambridge University Press, New York

    Google Scholar 

  • Kooijman SALM (1998) The Synthesizing Unit as model for the stoichiometric fusion and branching of metabolic fluxes. Biophys Chem 73:179–188

    Article  PubMed  CAS  Google Scholar 

  • Kooijman SALM (2000) Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, New York

    Book  Google Scholar 

  • Kooijman SALM (2001) Quantitative aspects of metabolic organization: a discussion of concepts. Philos Trans R Soc Lond B 356:331–349

    Article  CAS  Google Scholar 

  • Kooijman SALM (2010) Dynamic energy budget theory for metabolic organization. Cambridge University Press, London

    Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown BE, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeog. doi:10.1111/j.1365-2699.2010.02273.x

  • Lewis JB, Price WS (1975) Feeding mechanisms and feeding strategies of Atlantic reef corals. J Zool 176:527–544

    Article  Google Scholar 

  • McCloskey LR, Muscatine L (1984) Production and respiration in the Red Sea coral Stylophora pistillata as a function of depth. Proc R Soc Lond B 222:215–230

    Article  Google Scholar 

  • Moran N (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA 104:8627–8633

    Article  PubMed  CAS  Google Scholar 

  • Muller EB, Nisbet RM, Kooijman S, Elser JJ, McCauley E (2001) Stoichiometric food quality and herbivore dynamics. Ecol Lett 4:519–529

    Article  Google Scholar 

  • Muller EB, Kooijman SALM, Edmunds PJ, Doyle FJ, Nisbet RM (2009) Dynamic energy budgets in syntrophic symbiotic relationships between heterotrophic hosts and photoauotrophic symbionts. J Theor Biol 259:44–57

    Article  PubMed  Google Scholar 

  • Muller-Parker G, D’Elia CF (1997) Interactions between corals and their symbiotic algae. In: Birkeland C (ed) Life and death of corals reefs. Chapman and Hall, New York, pp 96–113

    Chapter  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Nakamura T, Yamasaki H (2005) Requirement of water-flow for sustainable growth of Pocilloporid corals during high temperature periods. Mar Poll Bull 50:1115–1120

    Article  CAS  Google Scholar 

  • Nisbet RM, Muller EB, Lika K, Kooijman SALM (2000) From molecules to ecosystems through dynamics energy budget models. J Anim Ecol 69:913–926

    Article  Google Scholar 

  • Oliver JK (1983) Bathymetric adaptations of reef-buidling corals at Davies Reef, Great Barrier Reef, Australia. I. Long-term, growth responses of Acropora formosa (Dana 1846). J Exp Mar Biol Ecol 73:11–35

    Article  Google Scholar 

  • Osenberg CW, Sarnelle O, Cooper SD, Holt RD (1999) Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology 80:1105–1117

    Article  Google Scholar 

  • Patterson MR (1992) A chemical engineering view of cnidarian symbioses. Am Zool 32:566–582

    Google Scholar 

  • Porter JW (1972) Patterns of species diversity in Caribbean reef corals. Ecology 53:745–748

    Article  Google Scholar 

  • Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am Nat 110:731–742

    Article  Google Scholar 

  • Porter JW, Muscatine L, Dubinsky Z, Falkowski PG (1984) Primary production and photoadaptation in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B 222:161–180

    Article  Google Scholar 

  • Pörtner HO, Farell AP (2008) Physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

  • Rowan R, Powers DA (1991) Molecular genetuc identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73

    Article  CAS  Google Scholar 

  • Schutter M, Crocker J, Paijmans A, Janse M, Osinga R, Verreth AJ, Wijffels RH (2010) The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis. Coral Reefs. doi:10.1007/s00338-010-0617-2

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. J Exp Biol 213:912–920

    Article  PubMed  CAS  Google Scholar 

  • Stambler N, Dubinsky Z (2005) Corals as light collectors: an integrating sphere approach. Coral Reefs 24:1–9

    Article  Google Scholar 

  • Stephensen TA (1931) Development and formation of colonies in Pocillopora and Porites. Sci Rep Gt Barrier Reef Exped 3:113–134

    Google Scholar 

  • Tambutte E, Allemand D, Zoccola D, Meibom A, Lotto S, Caminiti N, Tambutte S (2007) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26:517–529

    Article  Google Scholar 

  • Trench RK, Blank RJ (1987) Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov. S. kawaguti sp. nov. and S. pilosum sp. nov.: gymnodinoid dinoflagellate symbionts of marine invertebrates. J Phycol 23:454–469

    Article  Google Scholar 

  • Van Woesik R, Shiroma K, Koksal S (2010) Phenotypic variance predicts symbiont population densities in corals: a modeling approach. PLoS One 5:e9185

    Article  PubMed  Google Scholar 

  • Vandermeulen JH (1974) Studies on reef corals. II. Fine structure of planktonic planula larva of Pocillopora damicornis, with emphasis on the aboral epidermis. Mar Biol 27:239–249

    Article  Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Warner ME, Chilcoat GC, McFarland FK, Fitt WK (2002) Seasonal fluctuations in the photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea. Mar Biol 141:31–38

    Article  CAS  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Env 31:679–694

    Article  CAS  Google Scholar 

  • Yonge CM (1968) Living corals. Proc R Soc Lond B 169:329–344

    Article  Google Scholar 

  • Zonneveld C (1998) A cell-based model for the chlorophyll a to carbon ratio in phytoplankton. Ecol Model 113:55–70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Laure Pecquerie for valuable discussions regarding DEB theory. This research was supported by grants from the US National Science Foundation through the Advancing Theory in Biology program (NSF EF 07-42567 and EF 07- 0742521) and the Long Term Ecological Research (LTER) program (NSF 04-17412). Comments from two anonymous reviewers improved an earlier draft of this manuscript. This is contribution number 173 of the Marine Biology Program of California State University, and 1441 of the Hawaii Institute of Marine Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Edmunds.

Additional information

Communicated by Craig Osenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 753 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edmunds, P.J., Putnam, H.M., Nisbet, R.M. et al. Benchmarks in organism performance and their use in comparative analyses. Oecologia 167, 379–390 (2011). https://doi.org/10.1007/s00442-011-2004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2004-2

Keywords

Navigation