Skip to main content
Log in

Effects of increasing temperatures on population dynamics of the zebra mussel Dreissena polymorpha: implications from an individual-based model

  • Global Change and Conservation Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Zebra mussels (Dreissena polymorpha, Pallas, 1771) have had unprecedented success in colonizing European and North American waters under strongly differing temperature regimes. Thus, the mussel is an excellent model of a species which is able to cope with increasing water temperatures expected under global change. We study three principle scenarios for successful survival of the mussel under rising temperatures: (1) no adaptation to future thermal conditions is needed, existing performance is great enough; (2) a shift (adaptation) towards higher temperatures is required; or (3) a broadening of the range of tolerated temperatures (adaptation) is needed. We developed a stochastic individual-based model which describes the demographic growth of D. polymorpha to determine which of the alternative scenarios might enable future survival. It is a day-degree model which is determined by ambient water temperature. Daily temperatures are generated based on long-term data of the River Rhine. Predictions under temperature conditions as recently observed for this river that are made for the phenology of reproduction, the age distribution and the shell length distribution conform with field observations. Our simulations show that temporal patterns in the life cycle of the mussel will be altered under rising temperatures. In all scenarios spawning started earlier in the year and the total reproductive output of a population was dominated by the events later in the spawning period. For maximum temperatures between 20 and 26°C no thermal adaptation of the mussel is required. No extinctions and stable age distributions over generations were observed in scenario 2 for all maximum temperatures studied. In contrast, no population with a fixed range of tolerated temperatures survived in scenario 3 with high maximum temperatures (28, 30, 32°C). Age distributions showed an excess of 0+ individuals which resulted in an extinction of the population for several thermal ranges investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bastviken DTE, Caraco NF, Cole JJ (1998) Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition. Freshwater Biol 39:375–386

    Article  Google Scholar 

  • Borcherding J (1991) The annual reproductive cycle of the freshwater mussel Dreissena polymorpha Pallas in lakes. Oecologia 87:208–218

    Article  Google Scholar 

  • Borcherding J (1992) Morphometric changes in relation to the annual reproductive cycle in Dreissena polymorpha—a prerequisite for biomonitoring studies with zebra mussels. In: Neumann D, Jenner HA (eds) The zebra mussel Dreissena polymorpha: ecology, biological monitoring and first applications in water quality management. Limnologie aktuell 4. Fischer, Stuttgart, pp 87–99

    Google Scholar 

  • Borcherding J, Sturm W (2002) The seasonal succession of macroinvertebrates, in particular the zebra mussel (Dreissena polymorpha), in the River Rhine and two neighbouring gravel-pit lakes monitored using artificial substrates. Int Rev Hydrobiol 87:165–181

    Article  Google Scholar 

  • Borcherding J, de Ruyter van Steveninck ED (1992) Abundance and growth of Dreissena polymorpha larvae in the water column of the River Rhine during downstream transportation. In: Neumann D, Jenner HA (eds) The zebra mussel Dreissena polymorpha: ecology, biological monitoring and first applications in water quality management. Limnologie aktuell 4. Fischer, Stuttgart, pp 29–44

    Google Scholar 

  • Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411:296–298

    Article  PubMed  CAS  Google Scholar 

  • Edwards M, Beaugrand G, Reid PC, Rowden AA, Jones MB (2002) Ocean climate anomalies and the ecology of the North Sea. Mar Ecol Prog Ser 239:1–10

    Google Scholar 

  • DeAngelis DL, Gross LJ (1992) Individual-based models and approaches in ecology: populations, communities and ecosystems. Chapman Hall, New York

  • DeAngelis DL, Mooij WM (2005) Individual-based modeling of ecological and evolutionary processes. Annu Rev Ecol Evol Syst 36:147–168

    Article  Google Scholar 

  • Einsle U (1973) Zur Horizontal- und Vertikalverteilung der Larven von Dreissena polymorpha im Pelagial des Bodensee-Obersees (1971). Gas-Wasserfach Wasser Abwasser 114:27–30

    Google Scholar 

  • Elliott JM, Hurley MA, Maberly SC (2000) The emergence of sea trout fry in a Lake District stream correlates with the North Atlantic Oscillation. J Fish Biol 56:208–210

    Article  Google Scholar 

  • Garton DW, Johnson LE (2000) Variation in growth rates of the zebra mussel, Dreissena polymorpha, within Lake Wawasee. Freshwater Biol 45:443–451

    Article  Google Scholar 

  • Grabherr G (1994) Climate effects on mountain plants. Nature 369:448

    Article  Google Scholar 

  • Griebeler EM, Gottschalk E (2000) The influence of temperature model assumptions on prognosis accuracy of extinction risk. Ecol Modell 134:343–356

    Article  Google Scholar 

  • Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton, N.J.

  • Hebert PDN, Muncaster BW, Mackie GL (1989) Ecological and genetic studies in Dreissena polymorpha (Pallas): a new mollusc in the Great Lakes. Can J Fish Aquat Sci 46:1587–1591

    Google Scholar 

  • Hill JK, Thomas CD, Huntley B (1999) Climate change and habitat availability determine 20th century changes in a butterfly’s range margin. Proc R Soc Lond B 266:1197–1206

    Article  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755

    Article  PubMed  CAS  Google Scholar 

  • IPCC (International Panel on Climate Change) (2001) Climate change 2001: impacts, adaptations and vulnerability. UNEP, WHO

  • Jantz B (1996) Wachstum, Reproduktion, Populationsentwicklung und Beeinträchtigung der Zebramuschel (Dreissena polymorpha) in einem großen Fließgewässer, dem Rhein. Dissertation, University of Cologne

  • Jantz B, Neumann D (1992) Shell growth and population dynamics of Dreissena polymorpha in the river Rhine. In: Neumann D, Jenner HA (eds) The zebra mussel Dreissena polymorpha: ecology, biological monitoring and first applications in water quality management. Limnologie aktuell 4. Fischer, Stuttgart, pp 49–66

    Google Scholar 

  • Jantz B, Neumann D (1998) Growth and reproductive cycle of the zebra mussel in the River Rhine as studied in a river bypass. Oecologia 114:213–225

    Article  Google Scholar 

  • Jenner HA, Jansen-Mommen JPM (1993) Monitoring and control of Dreissena polymorpha and other macrofouling bivalves in the Netherlands. In: Nalepa TF, Schloesser DW (eds) Zebra mussels—biology, impacts, and control. Lewis, Boca Raton, Fla., pp 537–554

    Google Scholar 

  • Keller F, Kienast F, Beniston M (2000) Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg Environ Change 1:70–77

    Article  Google Scholar 

  • Kemp WP, Onsager JA (1986) Rangeland grasshoppers (Orthoptera: Acrididae): modelling phenology of natural populations of six species. Environ Entomol 15:924–930

    Google Scholar 

  • Lauer TE, Spacie A (2004) Space as a limiting resource in freshwater systems: competition between zebra mussels (Dreissena polymorpha) and freshwater sponges (Porifera). Hydrobiologia 517:137–145

    Article  Google Scholar 

  • Lewandowski K, Ejsmont-Karabin J (1983) Ecology of planktonic larvae of Dreissena polymorpha (Pallas) in lakes with different degree of heating. Pol Arch Hydrobiol 30:89–101

    Google Scholar 

  • Liakhnovich VN, Karataev AY et al. (1994) Habitat parameters. In: Starobogatov YI (eds) Freshwater zebra mussel Dreissena polymorpha (Pall.) (Bivalvia, Dreissenidae) taxonomy, ecology and practical use. Nauka, Moscow, pp 67–109

    Google Scholar 

  • Marco DE, Páez SA (2000) Invasion of Gleditsia triacanthos in Lithraea ternifolia montane forests of central Argentina. Environ Manage 26:409–419

    Article  PubMed  Google Scholar 

  • Marsden JE, Spiedle AP, May B (1996) Review of genetic studies of Dreissena spp. Am Zool 36:259–270

    Google Scholar 

  • McMahon RF (1996) The physiological ecology of the zebra mussel, Dreissena polymorpha, in North America and Europe. Am Zool 36:339–363

    Google Scholar 

  • Meisenheimer J (1901) Entwicklungsgeschichte von Dreissena polymorpha Pall. Z Wiss Zool 69:1–137

    Google Scholar 

  • Mehlig B, Pohlmann M et al. (2004) Das hydrologische Jahr 2003 und das außergewöhnliche Niedrigwasser im Sommer 2003. Jahresbericht 2003. Landesumweltamt NRW, pp 47–62

  • Minchin D, Lucy F, Sullivan M (2002) Zebra mussels: impact and spread. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe—distribution, impact and management, Kluwer, Dordrecht, pp 135–146

    Google Scholar 

  • Möllmann C, Kornilovs G, Sidrevics L (2000) Long-term dynamics of main mesozooplankton species in the central Baltic Sea. J Plankton Res 22:2015–2038

    Article  Google Scholar 

  • Müller J, Wöll S, Fuchs U, Seitz A (2001) Genetic interchange of Dreissena polymorpha populations across a canal. Heredity 86:103–109

    Article  PubMed  Google Scholar 

  • Nalepa TF, Schloesser DW (1993) Zebra mussels—biology, impacts, and control. Lewis, Boca Raton, Fla.

  • Neumann D (1990) Macrozoobenthos-Arten als Bioindikatoren im Rhein und seinen angrenzenden Baggerseen. In: Kinzelbach R, Friedrich G (eds) Biologie des Rheins. Fischer, Stuttgart, pp 87–105

    Google Scholar 

  • Neumann D, Borcherding J, Jantz B (1993) Growth and seasonal reproduction of Dreissena polymorpha in the Rhine River and adjacent waters. In: Nalepa TF, Schloesser DW (eds) Zebra mussels—biology, impacts, and control. Lewis, Boca Raton, Fla., pp 95–109

    Google Scholar 

  • North AW (2005) Mackerel icefish size and age differences and long-term change at South Georgia and Shag Rocks. J Fish Biol 67:1666–1685

    Article  Google Scholar 

  • Orlova MI (2002) Dreissena (D.) polymorpha: evolutionary origin and biological peculiarities as prerequisites of invasion process. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe—distribution, impact and management, Kluwer, Dordrecht, pp 127–134

    Google Scholar 

  • Parmesan C, Ryrholm N et al (1999) Poleward shifts in geographical ranges of butterfly species associated with global warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    Article  PubMed  CAS  Google Scholar 

  • Pöckel M, Webb BW, Sutcliffe DW (2003) Life history and reproductive capacity of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda) under naturally fluctuating water temperatures: a simulation study. Freshwater Biol 48:53–66

    Article  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • Railsback SF (2001) Concepts from complex adaptive systems as a framework for individual-based modelling. Ecol Modell 139:47–62

    Article  Google Scholar 

  • Ramcharan CW, Padilla DK, Dodson SI (1997) Models to predict potential occurrence and density of the zebra mussel, Dreissena polymorpha. Can J Fish Aquat Sci 49:2611–2620

    Article  Google Scholar 

  • Ruyter van Steveninck ED de, Admiraal W, Zanten B van (1990) Changes in plankton communities exposed to sedimentation in regulated reaches of the lower River Rhine. Regul Rivers 5:67–75

    Article  Google Scholar 

  • Roy DB, Sparks TH (2000) Phenology of British butterflies and Climate change. Global Change Biol 6:407–416

    Article  Google Scholar 

  • Sanz JJ (2002) Climate change and breeding parameters of great and blue tits throughout the western Palearctic. Global Change Biol 8:409–422

    Article  Google Scholar 

  • Sanz JJ (2003) Large-scale effects of climate change on breeding parameters of pied flycatchers in Western Europe. Ecography 26:45–50

    Article  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology. Adaptation and environment. Cambridge University Press, Cambridge

  • Schneider DW (1992) A bioenergetics model of zebra mussel, Dreissena polymorpha growth in the Great Lakes. Can J Fish Aquat Sci 49:1406–1416

    Article  Google Scholar 

  • Smit H, Bij de Vaate A, Fioole A (1992) Shell growth of the zebra mussel (Dreissena polymorpha, Pallas) in relation to selected physico-chemical parameters in the Lower Rhine and some associated lakes. Arch Hydrobiol 124:257–280

    Google Scholar 

  • Smit H, Bij de Vaate A, Reeders HH, Nes EH van, Noordhuis R (1993) Colonisation, ecology, and positive aspects of zebra mussels (Dreissena polymorpha) in The Netherlands. In: Nalepa TF, Schloesser DW (eds) Zebra mussels—biology, impacts, and control. Lewis, Boca Raton, Fla., pp 55–77

    Google Scholar 

  • Sparks TH, Carey PD (1995) The response of species to climate over the centuries: an analysis of the Marsham phenology record 1736–1947. J Ecol 83:321–329

    Article  Google Scholar 

  • Sparks TH, Yates TJ (1997) The effect of spring temperatures on the appearance dates of butterflies 1883–1993. Ecography 20:368–374

    Article  Google Scholar 

  • Sprung M (1987) Ecological requirements of developing Dreissena polymorpha eggs. Arch Hydrobiol Suppl 79:69–86

    Google Scholar 

  • Sprung M (1991) Costs of reproduction: a study on metabolic requirements of the gonads and fecundity of the Bivalve Dreissena polymorpha. Malacologia 33:63–70

    Google Scholar 

  • Sprung M (1993) The other life: an account of present knowledge of the larval phase of Dreissena polymorpha. In: Nalepa TF, Schloesser DW (eds) Zebra mussels—biology, impacts, and control. Lewis, Boca Raton, Fla., pp 39–54

    Google Scholar 

  • Straile D (2000) Meterological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50

    Article  Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213

    Article  CAS  Google Scholar 

  • Wake DB (1991) Declining amphibian populations. Science 253:860

    Article  PubMed  Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Response of wild C4 and C3 grass (Poacea) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biol 5:723–741

    Article  Google Scholar 

  • White TA, Campbell BD, Kemp PD, Hunt CL (2000) Sensitivity of three grassland communities to simulated extreme temperature and rainfall events. Global Change Biol 6:671–684

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Bundesanstalt für Gewässerkunde for granting access to water temperature data of the River Rhine. We are grateful to Otto Richter, Dagmar Söndgerath and Claudia Bruhn (Technical University of Braunschweig, Germany) for supporting the analysis of long-term water temperatures as well as to Jes Johannesen, Nina Farwig and three anonymous reviewers for their valuable comments on this manuscript. This research was granted by the Deutsche Forschungsgemeinschaft (Se 506/13-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Maria Griebeler.

Additional information

Communicated by Ulrich Sommer.

Priority programme of the German Research Foundation—contribution 14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griebeler, E.M., Seitz, A. Effects of increasing temperatures on population dynamics of the zebra mussel Dreissena polymorpha: implications from an individual-based model. Oecologia 151, 530–543 (2007). https://doi.org/10.1007/s00442-006-0591-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-006-0591-0

Keywords

Navigation