Skip to main content

Advertisement

Log in

Demographic effects of extreme winter weather in the barn owl

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Extreme weather events can lead to immediate catastrophic mortality. Due to their rare occurrence, however, the long-term impacts of such events for ecological processes are unclear. We examined the effect of extreme winters on barn owl (Tyto alba) survival and reproduction in Switzerland over a 68-year period (∼20 generations). This long-term data set allowed us to compare events that occurred only once in several decades to more frequent events. Winter harshness explained 17 and 49% of the variance in juvenile and adult survival, respectively, and the two harshest winters were associated with major population crashes caused by simultaneous low juvenile and adult survival. These two winters increased the correlation between juvenile and adult survival from 0.63 to 0.69. Overall, survival decreased non-linearly with increasing winter harshness in adults, and linearly in juveniles. In contrast, brood size was not related to the harshness of the preceding winter. Our results thus reveal complex interactions between climate and demography. The relationship between weather and survival observed during regular years is likely to underestimate the importance of climate variation for population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altwegg R, Roulin A, Kestenholz M, Jenni L (2003) Variation and covariation in survival, dispersal, and population size in barn owls Tyto alba. J Anim Ecol 72:391–399

    Article  Google Scholar 

  • Altwegg R, Dummermuth S, Anholt BR, Flatt T (2005) Winter weather affects asp viper Vipera aspis population dynamics through susceptible juveniles. Oikos 110:55–66

    Article  Google Scholar 

  • Anderson DR, Burnham KP, White GC (1985) Problems in estimating age-specific survival rates from recovery data of birds ringed as young. J Anim Ecol 54:89–98

    Article  Google Scholar 

  • Blums P, Nichols JD, Hines JE, Mednis A (2002) Sources of variation in survival and breeding site fidelity in three species of European ducks. J Anim Ecol 71:438–450

    Article  Google Scholar 

  • Brownie C, Anderson DR, Burnham KP, Robson DS (1985) Statistical inference from band recovery data—a handbook, 2nd edn, Vol 156. US Fish and Wildlife Service, Resource publication

  • Burnham KP (1993) A theory for combined analysis of ring recovery and recapture data. In: Lebreton J-D, North PM (eds) Marked individuals in the study of bird populations. Birkhäuser, Basel, Switzerland, pp 199–213

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Burnham KP, White GC (2002) Evaluation of some random effects methodology applicable to bird ringing data. J Appl Stat 29:245–264

    Article  Google Scholar 

  • Burnham KP, Anderson DR, White GC, Brownie C, Pollock KH (1987) Design and analysis methods for fish survival experiments based on release–recapture. American Fishing Society, Bethesda

    Google Scholar 

  • Caswell H (2001) Matrix population models, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Clutton-Brock TH, Coulson T (2002) Comparative ungulate dynamics: the devil is in the detail. Philos Trans R Soc Lond B 357:1285–1298

    Article  CAS  Google Scholar 

  • Coulson T, Catchpole EA, Albon SD, Morgan BJT, Pemberton JM, Clutton-Brock TH, Crawley MJ, Grenfell BT (2001) Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292:1528–1531

    Article  PubMed  CAS  Google Scholar 

  • Crouse DT, Crowder LB, Caswell H (1987) A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology 68:1412–1423

    Article  Google Scholar 

  • Dennis B, Munholland PL, Scott JM (1991) Estimation of growth and extinction parameters for endangered species. Ecol Monogr 61:115–143

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  PubMed  CAS  Google Scholar 

  • Foley P (1994) Predicting extinction times from environmental stochasticity and carrying-capacity. Conserv Biol 8:124–137

    Article  Google Scholar 

  • Franklin AB, Anderson DR, Gutiérrez RJ, Burnham KP (2000) Climate, habitat quality, and fitness in northern spotted owl populations in northwestern California. Ecol Monogr 70:539–590

    Article  Google Scholar 

  • Franklin AB, Anderson DR, Burnham KP (2002) Estimation of long-term trends and variation in avian survival probabilities using random effects models. J Appl Stat 29:267–287

    Article  Google Scholar 

  • Frederiksen M, Bregnballe T (2000) Evidence for density-dependent survival in adult cormorants from a combined analysis of recoveries and resightings. J Anim Ecol 69:737–752

    Article  Google Scholar 

  • Gaillard J-M, Yoccoz NG (2003) Temporal variation in survival of mammals: a case of environmental canalization? Ecology 84:3294–3306

    Article  Google Scholar 

  • Gaillard J-M, Festa-Bianchet M, Yoccoz NG, Loison A, Toigo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393

    Article  Google Scholar 

  • Garel M, Loison A, Gaillard JM, Cugnasse JM, Maillard D (2004) The effects of a severe drought on mouflon lamb survival. Proc R Soc London B 271:S471–S473 DOI 10.1098/rsbl.2004.0219

    Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov Chain Monte Carlo in practice. Chapman and Hall, Boca Raton

    Google Scholar 

  • Güttinger H (1965) Zur Wintersterblichkeit schweizerischer Schleiereulen, Tyto alba, mit besonderer Berücksichtigung des Winters 1962/63. Ornithol Beob 62:14–23

    Google Scholar 

  • Hilborn R, Mangel M (1997) The ecological detective. Princeton University Press, Princeton

    Google Scholar 

  • Hone J, Sibly RM (2002) Demographic, mechanistic and density-dependent determinants of population growth rate: a case study in an avian predator. Philos Trans R Soc Lond B 357:1171–1177

    Article  Google Scholar 

  • Lande R, Orzack SH (1988) Extinction dynamics of age-structured populations in a fluctuating environment. Proc Natl Acad Sci USA 85:7418–7421

    Article  PubMed  CAS  Google Scholar 

  • Lande R, Engen S, Sæther B-E (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Link WA, Nichols JD (1994) On the importance of sampling variance to investigations of temporal variation in animal population size. Oikos 69:539–544

    Article  Google Scholar 

  • Loison A, Sæther B-E, Jerstad K, Røstad OW (2002) Disentangling the sources of variation in the survival of the European dipper. J Appl Stat 29:289–304

    Article  Google Scholar 

  • Morris WF, Doak DF (2004) Buffering of life histories against environmental stochasticity: accounting for a spurious correlation between the variabilities of vital rates and their contribution to fitness. Am Nat 163:579–590

    Article  PubMed  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteo Soc 81:443–450

    Article  Google Scholar 

  • Peach WJ, Thompson PS, Coulson JC (1994) Annual and long-term variation in the survival rates of British lapwings Vanellus vanellus. J Anim Ecol 63:60–70

    Article  Google Scholar 

  • Pfister CA (1998) Patterns of variance in stage-structured populations: evolutionary predictions and ecological implications. Proc Natl Acad Sci USA 95:213–218

    Article  PubMed  CAS  Google Scholar 

  • Pimm SL, Redfearn A (1988) The variability of population densities. Nature 334:613–614

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, Berlin Heidelberg New York

    Google Scholar 

  • R Development Core Team (2003) R: a language and environment for statistical computing, 1.8.1 edn. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reed DH, O’Grady JJ, Brook BW, Ballou JD, Frankham R (2003) Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol Conserv 113:23–34

    Article  Google Scholar 

  • Robinson RA, Green RE, Baillie SR, Peach WJ, Thomson DL (2004) Demographic mechanisms of the population decline of the song thrush Turdus philomelos in Britain. J Anim Ecol 73:670–682

    Article  Google Scholar 

  • Roulin A (2002) Barn owl. BWP Update J 4:115–138

    Google Scholar 

  • Sæther B-E, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653

    Google Scholar 

  • Sæther B-E, Tufto J, Engen S, Jerstad K, Røstad OW, Skåtan JE (2000) Population dynamical consequences of climate change for a small temperate songbird. Science 287:854–856

    Article  PubMed  Google Scholar 

  • Sauter U (1956) Beiträge zur Ökologie der Schleiereule (Tyto alba) nach den Ringfunden. Vogelwarte 18:109–151

    Google Scholar 

  • Schifferli A (1949) Schwankungen des Schleiereulenbestandes Tyto alba (Scopoli). Ornithol Beob 46:61–75

    Google Scholar 

  • Schmid H, Burkhardt M, Keller V, Knaus P, Volet B, Zbinden N (2001) Die Entwicklung der Vogelwelt in der Schweiz / L’évolution de l’avifaune en Suisse, Sempach, Switzerland

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan K-S, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  PubMed  CAS  Google Scholar 

  • Tompa FS (1971) Catastrophic mortality and its population consequences. Auk 88:753–759

    Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139

    Article  Google Scholar 

Download references

Acknowledgements

We thank Elisabeth Wiprächtiger for help with data organisation, the numerous people who have ringed barn owls over the years, and David R. Anderson, Bradley R. Anholt, Leo Bruinzeel, Birgit Erni, Jean-Michel Gaillard, Martin Kainz, Laurent Keller, Michael Schaub, Hans Schmid, and the reviewers for helpful comments on earlier versions of the manuscript. Thanks to the Swiss Meteorological Institute for providing weather data. Res Altwegg and Alexandre Roulin were supported by grants from the Swiss Science Foundation (no. 81ZH-68483 to R.A, and 823A-064710 and PP00A—102913 to A.R.), an NSERC of Canada research grant (to B. Anholt), and a fellowship from the South African National Research Foundation (to R.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Res Altwegg.

Additional information

Communicated by Markku Orell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altwegg, R., Roulin, A., Kestenholz, M. et al. Demographic effects of extreme winter weather in the barn owl. Oecologia 149, 44–51 (2006). https://doi.org/10.1007/s00442-006-0430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-006-0430-3

Keywords

Navigation