Skip to main content

Advertisement

Log in

Development of neuroendocrine neurons in the mammalian hypothalamus

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The neuroendocrine system consists of a heterogeneous collection of (mostly) neuropeptidergic neurons found in four hypothalamic nuclei and sharing the ability to secrete neurohormones (all of them neuropeptides except dopamine) into the bloodstream. There are, however, abundant hypothalamic non-neuroendocrine neuropeptidergic neurons developing in parallel with the neuroendocrine system, so that both cannot be entirely disentangled. This heterogeneity results from the workings of a network of transcription factors many of which are already known. Olig2 and Fezf2 expressed in the progenitors, acting through mantle-expressed Otp and Sim1, Sim2 and Pou3f2 (Brn2), regulate production of magnocellular and anterior parvocellular neurons. Nkx2-1, Rax, Ascl1, Neurog3 and Dbx1 expressed in the progenitors, acting through mantle-expressed Isl1, Dlx1, Gsx1, Bsx, Hmx2/3, Ikzf1, Nr5a2 (LH-1) and Nr5a1 (SF-1) are responsible for tuberal parvocellular (arcuate nucleus) and other neuropeptidergic neurons. The existence of multiple progenitor domains whose progeny undergoes intricate tangential migrations as one source of complexity in the neuropeptidergic hypothalamus is the focus of much attention. How neurosecretory cells target axons to the medial eminence and posterior hypophysis is gradually becoming clear and exciting progress has been made on the mechanisms underlying neurovascular interface formation. While rat neuroanatomy and targeted mutations in mice have yielded fundamental knowledge about the neuroendocrine system in mammals, experiments on chick and zebrafish are providing key information about cellular and molecular mechanisms. Looking forward, data from every source will be necessary to unravel the ways in which the environment affects neuroendocrine development with consequences for adult health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3V:

third ventricle

ac:

anterior commissure

Agrp :

agouti related neuropeptide

AHA:

anterior hypothalamic area

ANT:

anterior region of the hypothalamus

ARH:

nucleus arcuatus of the hypothalamus

Avp:

arginine vasopressin

Cartpt :

CART (cocaine- and amphetamine-regulated transcript protein) prepropeptide

CNS:

central nervous system

Crh :

corticotropin releasing hormone

DMH:

dorsomedial nucleus of the hypothalamus

Ghrh :

growth hormone releasing hormone

Gnrh :

gonadotropin releasing hormone

GRN:

genomic regulatory network

hp.:

hypophysis

Kiss1 :

kisspeptin (KiSS-1 metastasis-suppressor)

LHA:

lateral hypothalamic area

MAM:

mamillary region of the hypothalamus

MBO:

mamillary body

MCH:

melanin-concentrating hormone

ME:

median eminence

α-MSH:

alpha-melanocyte-stimulating hormone

NE:

neuroendocrine (neurosecretory)

non-NE:

non-neuroendocrine (non-neurosecretory)

Npy:

neuropeptide Y

Oxt :

oxytocin

PMA:

premamillary area

POA:

preoptic region of the hypothalamus

PTh:

prethalamus

PV:

periventricular nucleus

PVH:

paraventricular nucleus of the hypothalamus

SCH:

suprachiasmatic nucleus

SO:

supraoptic nucleus

Sst :

somatostatin

Th :

tyrosine hydroxylase

Trh :

thyrotropin releasing hormone

TUB:

tuberal region of the hypothalamus

txf:

transcription factor

VMH:

ventromedial nucleus of the hypothalamus

VZ:

ventricular zone

ZLI:

zona limitans intrathalamica

References

  • Acampora D, Postiglione MP, Avantaggiato V, Di Bonito M, Vaccarino FM, Michaud J, Simeone A (1999) Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev 13:2787–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Bolado G, Rosenfeld MG, Swanson LW (1995) Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birthdates, and morphological features. J Comp Neurol 355:237–295

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Bolado G, Paul FA, Blaess S (2012) Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions. Neural Dev 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Anthwal N, Pelling M, Claxton S, Mellitzer G, Collin C, Kessaris N, Richardson WD, Gradwohl G, Ang SL (2013) Conditional deletion of neurogenin-3 using Nkx2. 1iCre results in a mouse model for the central control of feeding, activity and obesity. Dis Model Mech 6:1133–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  • Atkin SD, Owen BM, Bookout AL, Cravo RM, Lee C, Elias CF, Elmquist JK, Kliewer SA, Mangelsdorf DJ (2013) Nuclear receptor LRH-1 induces the reproductive neuropeptide kisspeptin in the hypothalamus. Mol Endocrinol 27:598–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aujla PK, Naratadam GT, Xu L, Raetzman LT (2013) Notch/Rbpjκ signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development 140:3511–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aujla PK, Bogdanovic V, Naratadam GT, Raetzman LT (2015) Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure. Dev Dyn 244:921–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beccari L, Marco-Ferreres R, Bovolenta P (2013) The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 130:95–111

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530

    Article  CAS  PubMed  Google Scholar 

  • Bhat KM (2014) Notch signaling acts before cell division to promote asymmetric cleavage and cell fate of neural precursor cells. Sci Signal 7:ra101

    Article  CAS  PubMed  Google Scholar 

  • Biehl MJ, Raetzman LT (2015) Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev Biol 406:235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biehl MJ, Raetzman LT (2017) Developmental origins of hypothalamic cells controlling reproduction. Semin Reprod Med 35:121–129

    Article  CAS  PubMed  Google Scholar 

  • Blechman J, Borodovsky N, Eisenberg M, Nabel-Rosen H, Grimm J, Levkowitz G (2007) Specification of hypothalamic neurons by dual regulation of the homeodomain protein Orthopedia. Development 134:4417–4426

    Article  CAS  PubMed  Google Scholar 

  • Borodovsky N, Ponomaryov T, Frenkel S, Levkowitz G (2009) Neural protein Olig2 acts upstream of the transcriptional regulator Sim1 to specify diencephalic dopaminergic neurons. Dev Dyn 238:826–834

    Article  CAS  PubMed  Google Scholar 

  • Bourikas D, Pekarik V, Baeriswyl T, Grunditz A, Sadhu R, Nardó M, Stoeckli ET (2005) Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat Neurosci 8:297–304

    Article  CAS  PubMed  Google Scholar 

  • Bovolenta P (2005) Morphogen signaling at the vertebrate growth cone: a few cases or a general strategy. J Neurobiol 64:405–416

    Article  PubMed  Google Scholar 

  • Brischoux F, Fellmann D, Risold PY (2001) Ontogenetic development of the diencephalic MCH neurons: a hypothalamic ‘MCH area’ hypothesis. Eur J Neurosci 13:1733–1744

    Article  CAS  PubMed  Google Scholar 

  • Brischoux F, Cvetkovic V, Griffond B, Fellmann D, Risold PY (2002) Time of genesis determines projection and neurokinin-3 expression patterns of diencephalic neurons containing melanin-concentrating hormone. Eur J Neurosci 16:1672–1680

    Article  CAS  PubMed  Google Scholar 

  • Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165:349–357

    Article  CAS  PubMed  Google Scholar 

  • Chédotal A (2007) Slits and their receptors. Adv Exp Med Biol 621:65–80

    Article  PubMed  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    Article  CAS  PubMed  Google Scholar 

  • Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147:5817–5825

    Article  CAS  PubMed  Google Scholar 

  • Croizier S, Cardot J, Brischoux F, Fellmann D, Griffond B, Risold PY (2013) The vertebrate diencephalic MCH system: a versatile neuronal population in an evolving brain. Front Neuroendocrinol 34:65–87

    Article  CAS  PubMed  Google Scholar 

  • Daikoku S, Hisano S, Kawano H, Okamura Y, Tsuruo Y (1983) Ontogenetic studies on the topographical heterogeneity of somatostatin-containing neurons in rat hypothalamus. Cell Tissue Res 233:347–354

    Article  CAS  PubMed  Google Scholar 

  • Davidson EH, Britten RJ (1974) Proceedings: molecular aspects of gene regulation in animal cells. Cancer Res 34:2034–2043

    CAS  PubMed  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678

    Article  CAS  PubMed  Google Scholar 

  • de Souza FS, Santangelo AM, Bumaschny V, Avale ME, Smart JL, Low MJ, Rubinstein M (2005) Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprinting. Mol Cell Biol 25:3076–3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson IC, Mollard P, Epelbaum J, Meaney MJ, Garel S, Le Bouc Y, Kappeler L (2017) IGF-1 induces GHRH neuronal axon elongation during early postnatal life in mice. PLoS One 12:e0170083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deiner MS, Sretavan DW (1999) Altered midline axon pathways and ectopic neurons in the developing hypothalamus of netrin-1- and DCC-deficient mice. J Neurosci 19:9900–9912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellovade TL, Young M, Ross EP, Henderson R, Caron K, Parker K, Tobet SA (2000) Disruption of the gene encoding SF-1 alters the distribution of hypothalamic neuronal phenotypes. J Comp Neurol 423:579–589

    Article  CAS  PubMed  Google Scholar 

  • Diaz C, Morales-Delgado N, Puelles L (2014) Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus. Front Neuroanat 8:162

    PubMed  Google Scholar 

  • Ebisu H, Iwai-Takekoshi L, Fujita-Jimbo E, Momoi T, Kawasaki H (2017) Foxp2 regulates identities and projection patterns of thalamic nuclei during development. Cereb Cortex 27:3648–3659

    PubMed  Google Scholar 

  • Eliava M, Melchior M, Knobloch-Bollmann HS, Wahis J, da Silva Gouveia M, Tang Y, Ciobanu AC, Triana Del Rio R, Roth LC, Althammer F, Chavant V, Goumon Y, Gruber T, Petit-Demoulière N, Busnelli M, Chini B, Tan LL, Mitre M, Froemke RC, Chao MV, Giese G, Sprengel R, Kuner R, Poisbeau P, Seeburg PH, Stoop R, Charlet A, Grinevich V (2016) A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89:1291–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezzat S, Mader R, Fischer S, Yu S, Ackerley C, Asa SL (2006) An essential role for the hematopoietic transcription factor Ikaros in hypothalamic-pituitary-mediated somatic growth. Proc Natl Acad Sci U S A 103:2214–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore R, Püschel AW (2003) The function of semaphorins during nervous system development. Front Biosci 8:s484–s499

    Article  CAS  PubMed  Google Scholar 

  • Fricker LD (2012) Neuropeptides and other bioactive peptides: from discovery to function, Colloquium Series on Neuropeptides. In: Fricker LD, Devi L (eds). Morgan & Claypool Life Sciences, San Rafael(California)

  • Goshu E, Jin H, Fasnacht R, Sepenski M, Michaud JL, Fan CM (2002) Sim2 mutants have developmental defects not overlapping with those of Sim1 mutants. Mol Cell Biol 22:4147–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goshu E, Jin H, Lovejoy J, Marion JF, Michaud JL, Fan CM (2004) Sim2 contributes to neuroendocrine hormone gene expression in the anterior hypothalamus. Mol Endocrinol 18:1251–1262

    Article  CAS  PubMed  Google Scholar 

  • Gutnick A, Blechman J, Kaslin J, Herwig L, Belting HG, Affolter M, Bonkowsky JL, Levkowitz G (2011) The hypothalamic neuropeptide oxytocin is required for formation of the neurovascular interface of the pituitary. Dev Cell 21:642–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad-Tóvolli R, Paul FA, Zhang Y, Zhou X, Theil T, Puelles L, Blaess S, Alvarez-Bolado G (2015) Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus. Front Neuroanat 9:34

    PubMed  PubMed Central  Google Scholar 

  • Hashimoto-Torii K, Motoyama J, Hui CC, Kuroiwa A, Nakafuku M, Shimamura K (2003) Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus. Mech Dev 120:1097–1111

    Article  CAS  PubMed  Google Scholar 

  • He X, Rosenfeld MG (1991) Mechanisms of complex transcriptional regulation: implications for brain development. Neuron 7:183–196

    Article  CAS  PubMed  Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi Y, Matsumoto H, Takatsu Y, Ohtaki T, Kitada C, Usuki S, Fujino M (2003) Dramatic elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-derived hormone in humans. J Clin Endocrinol Metab 88:914–919

    Article  CAS  PubMed  Google Scholar 

  • Horn AM, Robinson IC, Fink G (1985) Oxytocin and vasopressin in rat hypophysial portal blood: experimental studies in normal and Brattleboro rats. J Endocrinol 104:211–224

    Article  CAS  PubMed  Google Scholar 

  • Hosoya T, Oda Y, Takahashi S, Morita M, Kawauchi S, Ema M, Yamamoto M, Fujii-Kuriyama Y (2001) Defective development of secretory neurones in the hypothalamus of Arnt2-knockout mice. Genes Cells 6:361–374

    Article  CAS  PubMed  Google Scholar 

  • Johnston CA, Negro-Vilar A (1988) Role of oxytocin on prolactin secretion during proestrus and in different physiological or pharmacological paradigms. Endocrinology 122:341–350

    Article  CAS  PubMed  Google Scholar 

  • Kahn BM, Corman TS, Lovelace K, Hong M, Krauss RS, Epstein DJ (2017) Prenatal ethanol exposure in mice phenocopies Cdon mutation by impeding Shh function in the etiology of optic nerve hypoplasia. Dis Model Mech 10:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalsbeek A, Fliers E, Hofman MA, Swaab DF, Buijs RM (2010) Vasopressin and the output of the hypothalamic biological clock. J Neuroendocrinol 22:362–372

    Article  CAS  PubMed  Google Scholar 

  • Kapsimali M, Caneparo L, Houart C, Wilson SW (2004) Inhibition of Wnt/Axin/beta-catenin pathway activity promotes ventral CNS midline tissue to adopt hypothalamic rather than floorplate identity. Development 131:5923–5933

    Article  CAS  PubMed  Google Scholar 

  • Karim MA, Sloper JC (1980) Histogenesis of the supraoptic and paraventricular neurosecretory cells of the mouse hypothalamus. J Anat 130:341–347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka A, Shimogori T (2008) Fgf8 controls regional identity in the developing thalamus. Development 135:2873–2881

    Article  CAS  PubMed  Google Scholar 

  • Kauffman SA (1981) Pattern formation in the Drosophila embryo. Philos Trans R Soc Lond Ser B Biol Sci 295:567–594

    Article  CAS  Google Scholar 

  • Kawano H, Daikoku S (1988) Somatostatin-containing neuron systems in the rat hypothalamus: retrograde tracing and immunohistochemical studies. J Comp Neurol 271:293–299

    Article  CAS  PubMed  Google Scholar 

  • Kawano H, Daikoku S, Saito S (1982) Immunohistochemical studies of intrahypothalamic somatostatin-containing neurons in rat. Brain Res 242:227–232

    Article  CAS  PubMed  Google Scholar 

  • Kawano H, Horie M, Honma S, Kawamura K, Takeuchi K, Kimura S (2003) Aberrant trajectory of ascending dopaminergic pathway in mice lacking Nkx2.1. Exp Neurol 182:103–112

    Article  CAS  PubMed  Google Scholar 

  • Keith B, Adelman DM, Simon MC (2001) Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc Natl Acad Sci U S A 98:6692–6697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69

    Article  CAS  PubMed  Google Scholar 

  • Lee BJ, Cho GJ, Norgren RB, Junier MP, Hill DF, Tapia V, Costa ME, Ojeda SR (2001) TTF-1, a homeodomain gene required for diencephalic morphogenesis, is postnatally expressed in the neuroendocrine brain in a developmentally regulated and cell-specific fashion. Mol Cell Neurosci 17:107–126

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Wu SF, Goering LM, Dorsky RI (2006) Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development 133:4451–4461

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Kim SG, Kim J, Choi KY, Lee S, Lee SK, Lee JW (2013) Brain-specific homeobox factor as a target selector for glucocorticoid receptor in energy balance. Mol Cell Biol 33:2650–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee B, Lee S, Lee SK, Lee JW (2016) The LIM-homeobox transcription factor Isl1 plays crucial roles in the development of multiple arcuate nucleus neurons. Development 143:3763–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zeitler PS, Valerius MT, Small K, Potter SS (1996) Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J 15:714–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Placzek M (2014) Axon guidance effects of classical morphogens Shh and BMP7 in the hypothalamo-pituitary system. Neurosci Lett 562:108–113

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Pogoda HM, Pearson CA, Ohyama K, Löhr H, Hammerschmidt M, Placzek M (2013) Direct and indirect roles of Fgf3 and Fgf10 in innervation and vascularisation of the vertebrate hypothalamic neurohypophysis. Development 140:1111–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low VF, Fiorini Z, Fisher L, Jasoni CL (2012) Netrin-1 stimulates developing GnRH neurons to extend neurites to the median eminence in a calcium-dependent manner. PLoS One 7:e46999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Bogarad LD, Murtha MT, Ruddle FH (1992) Expression pattern of a murine homeobox gene, Dbx, displays extreme spatial restriction in embryonic forebrain and spinal cord. Proc Natl Acad Sci U S A 89:8053–8057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu F, Kar D, Gruenig N, Zhang ZW, Cousins N, Rodgers HM, Swindell EC, Jamrich M, Schuurmans C, Mathers PH, Kurrasch DM (2013) Rax is a selector gene for mediobasal hypothalamic cell types. J Neurosci 33:259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luther JA, Halmos KC, Tasker JG (2000) A slow transient potassium current expressed in a subset of neurosecretory neurons of the hypothalamic paraventricular nucleus. J Neurophysiol 84:1814–1825

    Article  CAS  PubMed  Google Scholar 

  • Luther JA, Daftary SS, Boudaba C, Gould GC, Halmos KC, Tasker JG (2002) Neurosecretory and non-neurosecretory parvocellular neurones of the hypothalamic paraventricular nucleus express distinct electrophysiological properties. J Neuroendocrinol 14:929–932

    Article  CAS  PubMed  Google Scholar 

  • Manning L, Ohyama K, Saeger B, Hatano O, Wilson SA, Logan M, Placzek M (2006) Regional morphogenesis in the hypothalamus: a BMP-Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev Cell 11:873–885

    Article  CAS  PubMed  Google Scholar 

  • Marin O, Baker J, Puelles L, Rubenstein JL (2002) Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 129:761–773

    CAS  PubMed  Google Scholar 

  • Markakis EA, Swanson LW (1997) Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuroendocrine system. Brain Res Brain Res Rev 24:255–291

    Article  CAS  PubMed  Google Scholar 

  • McNay DE, Pelling M, Claxton S, Guillemot F, Ang SL (2006) Mash1 is required for generic and subtype differentiation of hypothalamic neuroendocrine cells. Mol Endocrinol 20:1623–1632

    Article  CAS  PubMed  Google Scholar 

  • Meister B, Hökfelt T, Vale WW, Sawchenko PE, Swanson L, Goldstein M (1986) Coexistence of tyrosine hydroxylase and growth hormone-releasing factor in a subpopulation of tubero-infundibular neurons of the rat. Neuroendocrinology 42:237–247

    Article  CAS  PubMed  Google Scholar 

  • Michaud JL, Rosenquist T, May NR, Fan CM (1998) Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 12:3264–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaud JL, DeRossi C, May NR, Holdener BC, Fan CM (2000) ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev 90:253–261

    Article  CAS  PubMed  Google Scholar 

  • Michaud JL, Boucher F, Melnyk A, Gauthier F, Goshu E, Levy E, Mitchell GA, Himms-Hagen J, Fan CM (2001) Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet 10:1465–1473

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Angulo AL, Byerly MS, Mesa J, Wang H, Blackshaw S (2014) Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J Comp Neurol 522:876–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffett P, Pelletier J (2000) Different transcriptional properties of mSim-1 and mSim-2. FEBS Lett 466:80–86

    Article  CAS  PubMed  Google Scholar 

  • Morales-Delgado N, Merchan P, Bardet SM, Ferran JL, Puelles L, Diaz C (2011) Topography of somatostatin gene expression relative to molecular progenitor domains during ontogeny of the mouse hypothalamus. Front Neuroanat 5:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales-Delgado N, Castro-Robles B, Ferran JL, Martinez-de-la-Torre M, Puelles L, Diaz C (2014) Regionalized differentiation of CRH, TRH, and GHRH peptidergic neurons in the mouse hypothalamus. Brain Struct Funct 219:1083–1111

    Article  CAS  PubMed  Google Scholar 

  • Mutsuga N, Iwasaki Y, Morishita M, Nomura A, Yamamori E, Yoshida M, Asai M, Ozaki N, Kambe F, Seo H, Oiso Y, Saito H (2001) Homeobox protein Gsh-1-dependent regulation of the rat GHRH gene promoter. Mol Endocrinol 15:2149–2156

    Article  CAS  PubMed  Google Scholar 

  • Nakai S, Kawano H, Yudate T, Nishi M, Kuno J, Nagata A, Jishage K, Hamada H, Fujii H, Kawamura K (1995) The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev 9:3109–3121

    Article  CAS  PubMed  Google Scholar 

  • Nam Y, Weng AP, Aster JC, Blacklow SC (2003) Structural requirements for assembly of the CSL·intracellular Notch1·Mastermind-like 1 transcriptional activation complex. J Biol Chem 278:21232–21239

    Article  CAS  PubMed  Google Scholar 

  • Nasif S, de Souza FS, González LE, Yamashita M, Orquera DP, Low MJ, Rubinstein M (2015) Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood. Proc Natl Acad Sci U S A 112:E1861–E1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olave I, Reinberg D, Vales LD (1998) The mammalian transcriptional repressor RBP (CBF1) targets TFIID and TFIIA to prevent activated transcription. Genes Dev 12:1621–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orquera DP, Nasif S, Low MJ, Rubinstein M, de Souza FSJ (2016) Essential function of the transcription factor Rax in the early patterning of the mammalian hypothalamus. Dev Biol 416:212–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelling M, Anthwal N, McNay D, Gradwohl G, Leiter AB, Guillemot F, Ang SL (2011) Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev Biol 349:406–416

    Article  CAS  PubMed  Google Scholar 

  • Phelps CJ, Romero MI, Hurley DL (2003) Growth hormone-releasing hormone-producing and dopaminergic neurones in the mouse arcuate nucleus are independently regulated populations. J Neuroendocrinol 15:280–288

    Article  CAS  PubMed  Google Scholar 

  • Placzek M, Briscoe J (2005) The floor plate: multiple cells, multiple signals. Nat Rev Neurosci 6:230–240

    Article  CAS  PubMed  Google Scholar 

  • Probst MR, Fan CM, Tessier-Lavigne M, Hankinson O (1997) Two murine homologs of the Drosophila single-minded protein that interact with the mouse aryl hydrocarbon receptor nuclear translocator protein. J Biol Chem 272:4451–4457

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Martinez-de-la-Torre M, Bardet S, Rubenstein JLR (2012) Hypothalamus. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier-Academic Press, San Diego

    Google Scholar 

  • Püschel AW (2002) The function of neuropilin/plexin complexes. Adv Exp Med Biol 515:71–80

    Article  PubMed  Google Scholar 

  • Rubenstein JL, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477

    Article  CAS  PubMed  Google Scholar 

  • Ryu S, Mahler J, Acampora D, Holzschuh J, Erhardt S, Omodei D, Simeone A, Driever W (2007) Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr Biol 17:873–880

    Article  CAS  PubMed  Google Scholar 

  • Sakkou M, Wiedmer P, Anlag K, Hamm A, Seuntjens E, Ettwiller L, Tschöp MH, Treier M (2007) A role for brain-specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior. Cell Metab 5:450–463

    Article  CAS  PubMed  Google Scholar 

  • Salinas PC (2003) The morphogen sonic hedgehog collaborates with netrin-1 to guide axons in the spinal cord. Trends Neurosci 26:641–643

    Article  CAS  PubMed  Google Scholar 

  • Salvatierra J, Lee DA, Zibetti C, Duran-Moreno M, Yoo S, Newman EA, Wang H, Bedont JL, de Melo J, Miranda-Angulo AL, Gil-Perotin S, Garcia-Verdugo JM, Blackshaw S (2014) The LIM homeodomain factor Lhx2 is required for hypothalamic tanycyte specification and differentiation. J Neurosci 34:16809–16820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Camacho C, Bovolenta P (2008) Autonomous and non-autonomous Shh signalling mediate the in vivo growth and guidance of mouse retinal ganglion cell axons. Development 135:3531–3541

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Camacho C, Rodríguez J, Ruiz JM, Trousse F, Bovolenta P (2005) Morphogens as growth cone signalling molecules. Brain Res Brain Res Rev 49:242–252

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260–272

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW, Vale WW (1984a) Corticotropin-releasing factor: co-expression within distinct subsets of oxytocin-, vasopressin-, and neurotensin-immunoreactive neurons in the hypothalamus of the male rat. J Neurosci 4:1118–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawchenko PE, Swanson LW, Vale WW (1984b) Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc Natl Acad Sci U S A 81:1883–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawchenko PE, Swanson LW, Rivier J, Vale WW (1985) The distribution of growth-hormone-releasing factor (GRF) immunoreactivity in the central nervous system of the rat: an immunohistochemical study using antisera directed against rat hypothalamic GRF. J Comp Neurol 237:100–115

    Article  CAS  PubMed  Google Scholar 

  • Schonemann MD, Ryan AK, McEvilly RJ, O’Connell SM, Arias CA, Kalla KA, Li P, Sawchenko PE, Rosenfeld MG (1995) Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev 9:3122–3135

    Article  CAS  PubMed  Google Scholar 

  • Schwanzel-Fukuda M, Pfaff DW (1989) Origin of luteinizing hormone-releasing hormone neurons. Nature 338:161–164

    Article  CAS  PubMed  Google Scholar 

  • Schwarting GA, Wierman ME, Tobet SA (2007) Gonadotropin-releasing hormone neuronal migration. Semin Reprod Med 25:305–312

    Article  CAS  PubMed  Google Scholar 

  • Seymour AJ, Scott V, Augustine RA, Bouwer GT, Campbell RE, Brown CH (2017) Development of an excitatory kisspeptin projection to the oxytocin system in late pregnancy. J Physiol 595:825–838

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Chiba S, Hosoya N, Kumano K, Saito T, Kurokawa M, Kanda Y, Hamada Y, Hirai H (2000) Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. Mol Cell Biol 20:6913–6922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M, Qi L, Qian J, Blackshaw S (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13:767–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinoda K, Lei H, Yoshii H, Nomura M, Nagano M, Shiba H, Sasaki H, Osawa Y, Ninomiya Y, Niwa O (1995) Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz-F1 disrupted mice. Dev Dyn 204:22–29

    Article  CAS  PubMed  Google Scholar 

  • Simmons DM, Swanson LW (2009) Comparison of the spatial distribution of seven types of neuroendocrine neurons in the rat paraventricular nucleus: toward a global 3D model. J Comp Neurol 516:423–441

    Article  PubMed  Google Scholar 

  • Sokolowski K, Esumi S, Hirata T, Kamal Y, Tran T, Lam A, Oboti L, Brighthaupt SC, Zaghlula M, Martinez J, Ghimbovschi S, Knoblach S, Pierani A, Tamamaki N, Shah NM, Jones KS, Corbin JG (2015) Specification of select hypothalamic circuits and innate behaviors by the embryonic patterning gene dbx1. Neuron 86:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolowski K, Tran T, Esumi S, Kamal Y, Oboti L, Lischinsky J, Goodrich M, Lam A, Carter M, Nakagawa Y, Corbin JG (2016) Molecular and behavioral profiling of Dbx1-derived neurons in the arcuate, lateral and ventromedial hypothalamic nuclei. Neural Dev 11:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son YJ, Hur MK, Ryu BJ, Park SK, Damante G, D’Elia AV, Costa ME, Ojeda SR, Lee BJ (2003) TTF-1, a homeodomain-containing transcription factor, participates in the control of body fluid homeostasis by regulating angiotensinogen gene transcription in the rat subfornical organ. J Biol Chem 278:27043–27052

    Article  CAS  PubMed  Google Scholar 

  • Struhl G, Adachi A (1998) Nuclear access and action of notch in vivo. Cell 93:649–660

    Article  CAS  PubMed  Google Scholar 

  • Sussel L, Marin O, Kimura S, Rubenstein JL (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126:3359–3370

    CAS  PubMed  Google Scholar 

  • Swanson LW (1986) Organization of mammalian neuroendocrine system. In: Mountcastle VB, Bloom FE, Geiger SR (eds) The nervous system IV. Oxford University Press, Bethesda

  • Swanson LW (1987) The hypothalamus. In: Björlund A, Hökfelt T, Swanson LW (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam

    Google Scholar 

  • Swanson HI, Chan WK, Bradfield CA (1995) DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J Biol Chem 270:26292–26302

    Article  CAS  PubMed  Google Scholar 

  • Szabó NE, Zhao T, Cankaya M, Theil T, Zhou X, Alvarez-Bolado G (2009a) Role of neuroepithelial Sonic hedgehog in hypothalamic patterning. J Neurosci 29:6989–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabó NE, Zhao T, Zhou X, Alvarez-Bolado G (2009b) The role of Sonic hedgehog of neural origin in thalamic differentiation in the mouse. J Neurosci 29:2453–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takuma N, Sheng HZ, Furuta Y, Ward JM, Sharma K, Hogan BL, Pfaff SL, Westphal H, Kimura S, Mahon KA (1998) Formation of Rathke’s pouch requires dual induction from the diencephalon. Development 125:4835–4840

    CAS  PubMed  Google Scholar 

  • Tran PV, Lee MB, Marín O, Xu B, Jones KR, Reichardt LF, Rubenstein JR, Ingraham HA (2003) Requirement of the orphan nuclear receptor SF-1 in terminal differentiation of ventromedial hypothalamic neurons. Mol Cell Neurosci 22:441–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubieta R, Uribe RM, González JA, García-Vázquez A, Pérez-Monter C, Pérez-Martínez L, Joseph-Bravo P, Charli JL (2007) BDNF up-regulates pre-pro-TRH mRNA expression in the fetal/neonatal paraventricular nucleus of the hypothalamus. Properties of the transduction pathway. Brain Res 1174:28–38

    Article  CAS  PubMed  Google Scholar 

  • Valerius MT, Li H, Stock JL, Weinstein M, Kaur S, Singh G, Potter SS (1995) Gsh-1: a novel murine homeobox gene expressed in the central nervous system. Dev Dyn 203:337–351

    Article  CAS  PubMed  Google Scholar 

  • Vokes SA, Ji H, McCuine S, Tenzen T, Giles S, Zhong S, Longabaugh WJ, Davidson EH, Wong WH, McMahon AP (2007) Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development 134:1977–1989

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Lufkin T (2000) The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev Biol 227:432–449

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Grimmer JF, Van De Water TR, Lufkin T (2004) Hmx2 and Hmx3 homeobox genes direct development of the murine inner ear and hypothalamus and can be functionally replaced by Drosophila Hmx. Dev Cell 7:439–453

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Egli D, Leibel RL (2016) Efficient generation of hypothalamic neurons from human pluripotent stem cells. Curr Protoc Hum Genet 90:21.5.1–21.5.14

    Article  Google Scholar 

  • Wircer E, Blechman J, Borodovsky N, Tsoory M, Nunes AR, Oliveira RF, Levkowitz G (2017) Homeodomain protein Otp affects developmental neuropeptide switching in oxytocin neurons associated with a long-term effect on social behavior. Elife 6

  • Wray S, Grant P, Gainer H (1989) Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci U S A 86:8132–8136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Fan CM (2007) Allocation of paraventricular and supraoptic neurons requires Sim1 function: a role for a Sim1 downstream gene PlexinC1. Mol Endocrinol 21:1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Yee CL, Wang Y, Anderson S, Ekker M, Rubenstein JL (2009) Arcuate nucleus expression of NKX2. 1 and DLX and lineages expressing these transcription factors in neuropeptide Y(+), proopiomelanocortin(+), and tyrosine hydroxylase(+) neurons in neonatal and adult mice. J Comp Neurol 517:37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip SH, York J, Hyland B, Bunn SJ, Grattan DR (2017) Incomplete concordance of dopamine transporter Cre (DAT). J Chem Neuroanat 90:40–48

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Tobet SA, Crandall JE, Jimenez TP, Schwarting GA (1995) The migration of luteinizing hormone-releasing hormone neurons in the developing rat is associated with a transient, caudal projection of the vomeronasal nerve. J Neurosci 15:7769–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Zevallos SE, Rizzoti K, Jeong Y, Lovell-Badge R, Epstein DJ (2012) Disruption of SoxB1-dependent Sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia. Dev Cell 22:585–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuñiga NR, Stoeckli ET (2017) Sonic—‘Jack-of-All-Trades’ in neural circuit formation. J Dev Biol 5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Alvarez-Bolado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Bolado, G. Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res 375, 23–39 (2019). https://doi.org/10.1007/s00441-018-2859-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2859-1

Keywords

Navigation