Skip to main content

Advertisement

Log in

Amygdalofugal axon terminals immunoreactive for L-aspartate or L-glutamate in the nucleus accumbens of rats and domestic chickens: a comparative electron microscopic immunocytochemical study combined with anterograde pathway tracing

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Several studies have shown that L-aspartate (Asp) is present in synaptic vesicles and released exocytotically from presynaptic terminals, possibly by Ca2+-dependent corelease of Asp and L-glutamate (Glu). It has been demonstrated that both excitatory amino acids (EAAs) are released from the rat striatum as part of corticostriatal neurotransmission. The single or colocalized occurrence of Asp and Glu in specific synaptic boutons of the chicken medial striatum/nucl. accumbens has been demonstrated by our group using ultrastructural immunocytochemistry. However, evidence for the presence of EAAs in any specific striatal pathway was only circumstantial. Here, we report on the distribution of Asp and Glu in specific synaptic terminals of the amygdalostriatal pathway, both in rat and chicken brains, combining anterograde tracing with postembedding immunogold labeling of Asp or Glu. Immunoreactivity for Asp and Glu was observed in amygdalofugal terminals with asymmetrical synaptic junctions (morphologically representing excitatory synapses) in both species. The postsynaptic targets were either dendritic spines or small dendrites, whereas axosomatic or axo-axonic connections were not observed. Ultrastructurally, the synaptic terminals immunoreactive for Asp were indistinguishable from those immunoreactive for Glu. The findigs are consistent with an Asp–Glu corelease mechanism, with a distinct synaptic contingent, evolutionarily conserved in the amygdalostriatal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abellan A, Medina L (2008) Expression of cLhx6 and cLhx7/8 suggests a pallido-pedunculo-preoptic origin for the lateral and medial parts of the avian bed nucleus of the stria terminalis. Brain Res Bull 75:299–304

    Article  PubMed  CAS  Google Scholar 

  • Adam AS, Csillag A (2006) Differential distribution of L-aspartate- and L-glutamate-immunoreactive structures in the arcopallium and medial striatum of the domestic chick (Gallus domesticus). J Comp Neurol 498:266–276

    Article  PubMed  CAS  Google Scholar 

  • Ambroggi F, Ishikawa A, Fields HL, Nicola SM (2008) Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59:648–661

    Article  PubMed  CAS  Google Scholar 

  • Aoki E, Semba R, Kato K, Kashiwamata S (1987) Purification of specific antibody against aspartate and immunocytochemical localization of aspartergic neurons in the rat brain. Neuroscience 21:755–765

    Article  PubMed  CAS  Google Scholar 

  • Balint E, Csillag A (2007) Nucleus accumbens subregions: hodological and immunohistochemical study in the domestic chick (Gallus domesticus). Cell Tissue Res 327:221–230

    Article  PubMed  Google Scholar 

  • Balint E, Mezey S, Csillag A (2011) Efferent connections of nucleus accumbens subdivisions of the domestic chicken (Gallus domesticus): an anterograde pathway tracing study. J Comp Neurol 519:2922–2953

    Article  PubMed  Google Scholar 

  • Baughman RW, Gilbert CD (1980) Aspartate and glutamate as possible neurotransmitters of cells in layer 6 of the visual cortex. Nature 287:848–850

    Article  PubMed  CAS  Google Scholar 

  • Bert L, Parrot S, Robert F, Desvignes C, Denoroy L, Suaud-Chagny MF, Renaud B (2002) In vivo temporal sequence of rat striatal glutamate, aspartate and dopamine efflux during apomorphine, nomifensine, NMDA and PDC in situ administration. Neuropharmacology 43:825–835

    Article  PubMed  CAS  Google Scholar 

  • Bolam JP (1992) Experimental Neuroanatomy - A Practical Approach. Oxford University Press, Oxford

  • Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278

    Article  PubMed  CAS  Google Scholar 

  • Csillag A, Szekely AD, Stewart MG (1997) Synaptic terminals immunolabelled against glutamate in the lobus parolfactorius of domestic chicks (Gallus domesticus) in relation to afferents from the archistriatum. Brain Res 750:171–179

    Article  PubMed  CAS  Google Scholar 

  • Csillag A, Balint E, Adam A, Zachar G (2008) The organisation of the basal ganglia in the domestic chick (Gallus domesticus): anatomical localisation of DARPP-32 in relation to glutamate. Brain Res Bull 76:183–191

    Article  PubMed  CAS  Google Scholar 

  • Davies DC, Csillag A, Szekely AD, Kabai P (1997) Efferent connections of the domestic chick archistriatum: a phaseolus lectin anterograde tracing study. J Comp Neurol 389:679–693

    Article  PubMed  CAS  Google Scholar 

  • Di Ciano P, Everitt BJ (2001) Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 25:341–360

    Article  Google Scholar 

  • Di Ciano P, Everitt BJ (2004) Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci Off J Soc Neurosci 24:7167–7173

    Article  Google Scholar 

  • Fagg GE, Foster AC (1983) Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9:701–719

    Article  PubMed  CAS  Google Scholar 

  • French SJ, Totterdell S (2003) Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats. Neuroscience 119:19–31

    Article  PubMed  CAS  Google Scholar 

  • Fricker-Gates RA, Shin JJ, Tai CC, Catapano LA, Macklis JD (2002) Late-stage immature neocortical neurons reconstruct interhemispheric connections and form synaptic contacts with increased efficiency in adult mouse cortex undergoing targeted neurodegeneration. J Neurosci Off J Soc Neurosci 22:4045–4056

    CAS  Google Scholar 

  • Girault JA, Barbeito L, Spampinato U, Gozlan H, Glowinski J, Besson MJ (1986) In vivo release of endogenous amino acids from the rat striatum: further evidence for a role of glutamate and aspartate in corticostriatal neurotransmission. J Neurochem 47:98–106

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res 107:485–511

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Mulder AB, Beijer AVJ, Wright CI, Lopes Da Silva FH, Pennartz CMA (1999) Hippocampal and amygdaloid interactions in the nucleus accumbens. Psychobiology 27:149–164

    Google Scholar 

  • Gundersen V, Storm-Mathisen J (2000) II. Aspartate - Neurochemical evidence for transmitter role. In: Ottersen OP, Storm-Mathisen J (eds) Handbook of chemical neuroanatomy, vol 18 - Glutamate. Elsevier/North Holland, Amsterdam, pp 45–62

    Google Scholar 

  • Gundersen V, Chaudhry FA, Bjaalie JG, Fonnum F, Ottersen OP, Storm-Mathisen J (1998) Synaptic vesicular localization and exocytosis of L-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J Neurosci Off J Soc Neurosci 18:6059–6070

    CAS  Google Scholar 

  • Gundersen V, Holten AT, Storm-Mathisen J (2004) GABAergic synapses in hippocampus exocytose aspartate on to NMDA receptors: quantitative immunogold evidence for co-transmission. Mol Cell Neurosci 26:156–165

    Article  PubMed  CAS  Google Scholar 

  • Husband SA, Shimizu T (2011) Calcium-binding protein distributions and fiber connections of the nucleus accumbens in the pigeon (Columba livia). J Comp Neurol 519:1371–1394

    Article  PubMed  CAS  Google Scholar 

  • Jarvis ED, Gunturkun O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159

    Article  PubMed  CAS  Google Scholar 

  • Johnson LR, Aylward RL, Hussain Z, Totterdell S (1994) Input from the amygdala to the rat nucleus accumbens: its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 61:851–865

    Article  PubMed  CAS  Google Scholar 

  • Kamisaki Y, Hamahashi T, Okada CM, Itoh T (1991) Clonidine inhibition of potassium-evoked release of glutamate and aspartate from rat cortical synaptosomes. Brain Res 568:193–198

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (1999) Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology 27:198–213

    Google Scholar 

  • Kozell LB, Meshul CK (2004) Nerve terminal glutamate immunoreactivity in the rat nucleus accumbens and ventral tegmental area after a short withdrawal from cocaine. Synapse 51:224–232

    Article  PubMed  CAS  Google Scholar 

  • Kuenzel WJ, Masson M (1988) A stereotaxic atlas of the brian of the chick(Gallus domesticus). Johns Hopkins University Press, Baltimore

  • Kuenzel WJ, Medina L, Csillag A, Perkel DJ, Reiner A (2011) The avian subpallium: new insights into structural and functional subdivisions occupying the lateral subpallial wall and their embryological origins. Brain Res 1424:67–101

    Article  PubMed  CAS  Google Scholar 

  • Lada MW, Vickroy TW, Kennedy RT (1998) Evidence for neuronal origin and metabotropic receptor-mediated regulation of extracellular glutamate and aspartate in rat striatum in vivo following electrical stimulation of the prefrontal cortex. J Neurochem 70:617–625

    Article  PubMed  CAS  Google Scholar 

  • Liu CJ, Grandes P, Matute C, Cuenod M, Streit P (1989) Glutamate-like immunoreactivity revealed in rat olfactory bulb, hippocampus and cerebellum by monoclonal antibody and sensitive staining method. Histochemistry 90:427–445

    Article  PubMed  CAS  Google Scholar 

  • Maura G, Carbone R, Raiteri M (1989) Aspartate-releasing nerve terminals in rat striatum possess D-2 dopamine receptors mediating inhibition of release. J Pharmacol Exp Ther 251:1142–1146

    PubMed  CAS  Google Scholar 

  • McDonald AJ (1991) Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience 44:15–33

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ (1996) Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala: colocalization of excitatory amino acids and projections to the limbic circuit. J Comp Neurol 365:367–379

    Article  PubMed  CAS  Google Scholar 

  • Miyaji T, Echigo N, Hiasa M, Senoh S, Omote H, Moriyama Y (2008) Identification of a vesicular aspartate transporter. Proc Natl Acad Sci USA 105:11720–11724

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  PubMed  CAS  Google Scholar 

  • Morland C, Nordegen K, Larsson M, Prolo L, Reimer R, Gundersen V (2011) Aspartate: a transmitter candidate at hippocampal synapses. 8th IBRO World Congress of Neuroscience, Florence, July 14–18, Poster abstract A136

  • Nadler JV (2011) Aspartate release and signalling in the hippocampus. Neurochem Res 36:668–676

    Article  PubMed  CAS  Google Scholar 

  • Nadler JV, Vaca KW, White WF, Lynch GS, Cotman CW (1976) Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature 260:538–540

    Article  PubMed  CAS  Google Scholar 

  • Naito S, Ueda T (1985) Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44:99–109

    Article  PubMed  CAS  Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1985) Different neuronal localization of aspartate-like and glutamate-like immunoreactivities in the hippocampus of rat, guinea-pig and Senegalese baboon (Papio papio), with a note on the distribution of gamma-aminobutyrate. Neuroscience 16:589–606

    Article  PubMed  CAS  Google Scholar 

  • Ottersen OP, Zhang N, Walberg F (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46:519–534

    Article  PubMed  CAS  Google Scholar 

  • Petrovich GD, Risold PY, Swanson LW (1996) Organization of projections from the basomedial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 374:387–420

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Gunturkun O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414

    Article  PubMed  Google Scholar 

  • Roberts TF, Hall WS, Brauth SE (2002) Organization of the avian basal forebrain: chemical anatomy in the parrot (Melopsittacus undulatus). J Comp Neurol 454:383–408

    Article  PubMed  Google Scholar 

  • Setlow B, Holland PC, Gallagher M (2002) Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive pavlovian second-order conditioned responses. Behav Neurosci 116:267–275

    Article  PubMed  Google Scholar 

  • Shinonaga Y, Takada M, Mizuno N (1994) Topographic organization of collateral projections from the basolateral amygdaloid nucleus to both the prefrontal cortex and nucleus accumbens in the rat. Neuroscience 58:389–397

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Hodgson AJ (1985) Antisera to gamma-aminobutyric acid. III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex. J Histochem Cytochem Off J Histochem Soc 33:249–257

    Article  CAS  Google Scholar 

  • Szekely AD, Boxer MI, Stewart MG, Csillag A (1994) Connectivity of the lobus parolfactorius of the domestic chicken (Gallus domesticus): an anterograde and retrograde pathway tracing study. J Comp Neurol 348:374–393

    Article  PubMed  CAS  Google Scholar 

  • Wiklund L, Toggenburger G, Cuenod M (1982) Aspartate: possible neurotransmitter in cerebellar climbing fibers. Science 216:78–80

    Article  PubMed  CAS  Google Scholar 

  • Zachar G, Wagner Z, Tabi T, Balint E, Szoko E, Csillag A (2012) Differential changes of extracellular aspartate and glutamate in the striatum of domestic chicken evoked by high potassium or distress: an in vivo microdialysis study. Neurochem Res. doi:10.1007/s11064-012-0783-4

Download references

Acknowledgments

The authors thank Mrs. Mária Szász for her devoted technical assistance in electron microscopy. Supported by OTKA K 73219 research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eszter Bálint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanics, J., Bálint, E., Milanovich, D. et al. Amygdalofugal axon terminals immunoreactive for L-aspartate or L-glutamate in the nucleus accumbens of rats and domestic chickens: a comparative electron microscopic immunocytochemical study combined with anterograde pathway tracing. Cell Tissue Res 350, 409–423 (2012). https://doi.org/10.1007/s00441-012-1494-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1494-5

Keywords

Navigation