Skip to main content

Advertisement

Log in

Structural organization of the cerebral cortex of the neotropical lizard Tropidurus hispidus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Lizards belonging to the Tropiduridae family are “sit-and-wait” foragers, relying mainly on visual identification to catch prey that cross their visual fields. Little is known about the neurobiology of Tropiduridae lizards. We have used neurohistological techniques to study the structural organization of the telencephalon of the neotropical lizard Tropidurus hispidus, paying special attention to the cerebral cortex. As revealed by the Nissl technique and Golgi staining, the telencephalon of T. hispidus follows the squamate pattern, with some differences: the lateral cortex appears relatively atrophic, and most of the neuronal somata of the dorsal cortex are dispersed without forming a conspicuous cell layer. Golgi staining has revealed ten different neuronal types in the three cortical layers, based on somata shape and dendritic morphology: the granular (unipolar, bipolar, and multipolar), pyramidal (normal, inverted, open, bipyramidal, and horizontal), spherical horizontal, and fusiform neuronal types. The axon direction could be traced in five of the subtypes. We have also studied the distribution of zinc-enriched terminals in the telencephalon of T. hispidus by the Neo-Timm method. Some portions of the cortex, septum, striatum, and amygdaloid complex stain heavily, with patterns resembling those described for other lizard families. Thus, T. hispidus appears to be an interesting representative of the Tropiduridae family for further neurobiological comparative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baird Day L, Crews D, Wilczynski W (1999) Relative medial and dorsal cortex volume in relation to foraging ecology in congeneric lizards. Brain Behav Evol 54:314–322

    Article  CAS  PubMed  Google Scholar 

  • Bruce LL, Butler AB (1984) Telencephalic connections in lizards. I. Projections to the cortex. J Comp Neurol 229:585–601

    Article  CAS  PubMed  Google Scholar 

  • De la Iglesia JAL, Lopez-Garcia C (1997a) A Golgi study of the principal projection neurons of the medial cortex of the lizard Podarcis hispanica. J Comp Neurol 385:528–564

    Article  Google Scholar 

  • De la Iglesia JAL, Lopez-Garcia C (1997b) A Golgi study of the short-axon interneurons of the cell layer and inner plexiform layer of the medial cortex of the lizard Podarcis hispanica. J Comp Neurol 385:565–598

    Article  Google Scholar 

  • De La Iglesia JAL, Martinez-Guijarro FJ, Lopez-Garcia C (1994) Neurons of the medial cortex outer plexiform layer of the lizard Podarcis hispanica: Golgi and immunocytochemical studies. J Comp Neurol 341:184–203

    Article  PubMed  Google Scholar 

  • Greenberg N (1982) A forebrain atlas and stereotaxic technique for the lizard Anolis carolinensis. J Morphol 174:217–236

    Article  Google Scholar 

  • Hoogland PV, Vermeulen-Vanderzee E (1989) Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 285:289–303

    Article  CAS  PubMed  Google Scholar 

  • Huey RB, Pianka ER (1981) Ecological consequences of foraging mode. Ecology 62:991–999

    Article  Google Scholar 

  • Kolodiuk MF, Ribeiro LB, Freire EMX (2010) Diet and foraging behavior of two species of Tropidurus (Squamata, Tropiduridade) in the Caatinga of northeastern Brazil. S Am J Herpetol 5:35–44

    Article  Google Scholar 

  • Ladage LD, Riggs BJ, Sinervo B, Pravosudov VV (2009) Dorsal cortex volume in male side-blotched lizards (Uta stansburiana) is associated with different space use strategies. Anim Behav 78:91–96

    Article  PubMed  Google Scholar 

  • Lohman AHM, Mentink GM (1972) Some cortical connections of the tegu lizard (Tupinambis teguxin). Brain Res 45:325–344

    Article  CAS  PubMed  Google Scholar 

  • Lohman AHM, Van Woerden-Verkley I (1978) Ascending connections to the forebrain in the tegu lizard. J Comp Neurol 182:555–594

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia C, Martinez-Guijarro FJ, Berbel P, Garcia-Verdugo JM (1988) Long-spined polymorphic neurons of the medial cortex of lizards: a Golgi, Timm, and electron-microscopic study. J Comp Neurol 272:409–423

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia C, Molowny A, Nacher J, Ponsoda X, Sancho-Bielsa F, Allonso-Llosa G (2002) The lizard cerebral cortex as a model to study neuronal regeneration. An Acad Bras Ciênc 74:85–104

    Article  PubMed  Google Scholar 

  • Marchioro M, Nunes J-MAM, Ramalho AMR, Molowny A, Perez-Martinez E, Ponsoda X, Lopez-Garcia C (2005) Postnatal neurogenesis in the medial cortex of the tropical lizard Tropidurus hispidus. Neuroscience 134:407–413

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Guijarro FJ, Molowny A, Lopez-Garcia C (1987) Timm-staining intensity is correlated with the density of Timm-positive presynaptic structures in the cerebral cortex of lizards. Histochemistry 86:315–319

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Garcia F, Amiguet M, Schwerdtfeger WK, Olucha FE, Lorente MJ (1990) Interhemispheric connections trough the pallial commissures in the brain of Podarcis hispanica and Gallotia stehlinii (Reptilia, Lacertidae). J Morphol 205:17–31

    Article  Google Scholar 

  • Martinez-Guijarro FJ, Soriano E, Del Rio JA, Lopez-Garcia C (1991) Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity. J Neurocytol 20:834–843

    Article  CAS  PubMed  Google Scholar 

  • Maurya RC, Srivastava UC (2006) Morphological diversity of the medial cortex neurons in the common Indian wall lizard, Hemidactylus flaviviridis. Natl Acad Sci Lett India 29:375–383

    Google Scholar 

  • Molowny A, Martinez-Catatayud J, Juan MJ, Martinez-Guijarro FJ, Lopez-Garcia C (1987) Zinc accumulation in the telencephalon of lizards. Histochemistry 86:311–314

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (1967) Architectonic studies of the telencephalon of Iguana iguana (Linnaeus). J Comp Neurol 130:109–147

    Article  CAS  PubMed  Google Scholar 

  • Olucha F, Martinez-Garcia F, Poch L, Schwerdtfeger WK, Lopez-Garcia C (1988) Projections from the medial cortex in the brain of lizards: correlation of anterograde and retrograde transport of horseradish peroxidase with Timm staining. J Comp Neurol 276:469–480

    Article  CAS  PubMed  Google Scholar 

  • Pasternak JF, Woolsey TA (1975) On the "selectivity" of the Golgi-Cox method. J Comp Neurol 160:307–312

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Clausell J (1988) Organization of zinc-containing terminal fields in the brain of the lizard Podarcis hispanica: a histochemical study. J Comp Neurol 267:153–171

    Article  PubMed  Google Scholar 

  • Roth ED, Lutterschmidt WI, Wilson DA (2006) Relative medial and dorsal cortex volume in relation to sex differences in spatial ecology of a snake population. Brain Behav Evol 67:103–110

    Article  PubMed  Google Scholar 

  • Shimono M, Tsuji N (1987) Study of the selectivity of the impregnation of neurons by the Golgi method. J Comp Neurol 259:122–130

    Article  CAS  PubMed  Google Scholar 

  • Sluys M van, Rocha CFD, Vrcibradic D, Galdino CAB, Fontes AF (2004) Diet, activity and microhabitat use of two syntopic Tropidurus species (Lacertilia: Tropiduridae) in Minas Gerais, Brazil. J Herpetol 38:606–611

    Article  Google Scholar 

  • Smeets WJA, Hoogland PV, Lohman AHM (1986) A forebrain atlas of the lizard Gekko gecko. J Comp Neurol 254:1–19

    Article  CAS  PubMed  Google Scholar 

  • Smeets WJA, Perez-Clausell J, Geneser FA (1989) The distribution of zinc in the forebrain and midbrain of Gekko gecko. A histochemical study. Anat Embryol 180:45–56

    Article  CAS  PubMed  Google Scholar 

  • Spacek J (1989) Dynamics of the Golgi method: a time lapse study of the early stages of impregnation in single sections. J Neurocytol 18:27–38

    Article  CAS  PubMed  Google Scholar 

  • Srivastava UC, Maurya RC, Chand P (2009) Cyto-architecture and neuronal types of the dorsomedial cerebral cortex of the common Indian wall lizard, Hemidactylus flaviviridis. Arch Ital Biol 147:21–35

    CAS  PubMed  Google Scholar 

  • Vitt LJ, Zani PA, Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia. J Trop Ecol 12:81–101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murilo Marchioro.

Additional information

This study was supported by CNPq-DF, Brazil and CAPES-DF, Brazil and by FAPITEC-SE, Brazil and DENOCS-SE, Brazil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Carvalho Pimentel, H., dos Santos, J.R., Macêdo-Lima, M. et al. Structural organization of the cerebral cortex of the neotropical lizard Tropidurus hispidus . Cell Tissue Res 343, 319–330 (2011). https://doi.org/10.1007/s00441-010-1097-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1097-y

Keywords

Navigation