Skip to main content
Log in

Expression of the noradrenaline transporter and phenylethanolamine N-methyltransferase in normal human adrenal gland and phaeochromocytoma

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Expression of the noradrenaline transporter (NAT) was examined in normal human adrenal medulla and phaeochromocytoma by using immunohistochemistry and confocal microscopy. The enzymes tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) were used as catecholamine biosynthetic markers and chromogranin A (CGA) as a marker for secretory granules. Catecholamine content was measured by using high performance liquid chromatography (HPLC). In normal human adrenal medulla (n=5), all chromaffin cells demonstrated strong TH, PNMT and NAT immunoreactivity. NAT was co-localized with PNMT and was located within the cytoplasm with a punctate appearance. Human phaeochromocytomas demonstrated strong TH expression (n=20 samples tested) but variable NAT and PNMT expression (n=24). NAT immunoreactivity ranged from absent (n=3) to weak (n=10) and strong (n=11) and, in some cases, occupied an apparent nuclear location. Unlike the expression seen in normal human adrenal medullary tissue, NAT expression was not consistently co-localized with PNMT. PNMT also showed highly variable expression that was poorly correlated with tumour adrenaline content. Immunoreactivity for CGA was colocalized with NAT within the cytoplasm of normal human chromaffin cells (n=4). This co-localization was not consistent in phaeochromocytoma tumour cells (n=7). The altered pattern of expression for both NAT and PNMT in phaeochromocytoma indicates a significant disruption in the regulation and possibly in the function of these proteins in adrenal medullary tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amara SG, Sonders MS, Zahniser NR, Povlock SL, Daniels GM (1998) Molecular physiology and regulation of catecholamine transporters. Adv Pharmacol 42:164–168

    Article  PubMed  CAS  Google Scholar 

  • Bauman PA, Blakely RD (2002) Determinants within the C-terminus of the human norepinephrine transporter dictate transporter trafficking, stability, and activity. Arch Biochem Biophys 404:80–91

    Article  PubMed  CAS  Google Scholar 

  • Blakely RD, Ramamoorthy S, Schroeter S, Qian Y, Apparsundaram S, Galli A, DeFelice LJ (1998) Regulated phosphorylation and trafficking of antidepressant-sensitive serotonin transporter proteins. Soc Biol Psych 44:169–178

    Article  CAS  Google Scholar 

  • Bravo E (1994) Evolving concepts in the pathophysiology, diagnosis, and treatment of pheochromocytoma. Endocr Rev 15:356–368

    Article  PubMed  CAS  Google Scholar 

  • Bryan-Lluka LJ, Westwood NN, O'Donnell SR (1992) Vascular uptake of catecholamines in perfused lungs of the rat occurs by the same process as Uptake1 in noradrenergic neurones. Naunyn Schmiedebergs Arch Pharmacol 345:319–326

    Article  PubMed  CAS  Google Scholar 

  • Burton LD, Kippenberger AG, Lingen B, Bruss M, Bonisch H, Christie DL (1998) A variant of the bovine noradrenaline transporter reveals the importance of the C-terminal region for correct targeting to the membrane and functional expression. Biochem J 330:909–914

    PubMed  CAS  Google Scholar 

  • Carlin S, Mairs RJ, McCluskey AG, Tweddle DA, Sprigg A, Estlin C, Board J, George RE, Ellershaw C, Pearson AD, Lunec J, Montaldo PG, Ponzoni M, Eck-Smit BL van, Hoefnagel CA, Brug MD van den, Tytgat GA, Caron HN (2003) Development of a real-time polymerase chain reaction assay for prediction of the uptake of meta-[(131)I]iodobenzylguanidine by neuroblastoma tumors. Clin Cancer Res 9:3338–3344

    PubMed  CAS  Google Scholar 

  • Chen NH, Reith ME, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 447:519–531

    Article  PubMed  CAS  Google Scholar 

  • Comer AM, Qi J, Christie DL, Gibbons HM, Lipski J (1998) Noradrenaline transporter expression in the pons and medulla oblongata of the rat: localisation to noradrenergic and some C1 adrenergic neurones. Mol Brain Res 62:65–76

    Article  PubMed  CAS  Google Scholar 

  • Ebert SN, Ficklin MB, Her S, Siddall BJ, Bell RA, Ganguly K, Morita K, Wong DL (1998) Glucocorticoid-dependent action of neural crest factor AP-2: stimulation of phenylethanolamine N-methyltransferase gene expression. J Neurochem 70:2286–2295

    Article  PubMed  CAS  Google Scholar 

  • Eisenhofer G, Goldstein DS, Stull R, Keiser HR, Sunderland T, Murphy DL, Kopin IJ (1986) Simultaneous liquid-chromatographic determination of 3,4-dihydroxyphenylglycol, catecholamines, and 3,4-dihydroxyphenylalanine in plasma, and their responses to inhibition of monoamine oxidase. Clin Chem 32:2030–2033

    PubMed  CAS  Google Scholar 

  • Eisenhofer G, Walther MM, Huynh TT, Li ST, Bornstein SR, Vortmeyer A, Mannelli M, Goldstein DS, Linehan WM, Lenders JW, Pacak K (2001) Pheochromocytomas in von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 display distinct biochemical and clinical phenotypes. J Clin Endocrinol Metab 86:1999–2008

    Article  PubMed  CAS  Google Scholar 

  • Eisenhofer G, Bornstein SR, Brouwers FM, Cheung NK, Dahia PL, Krijger RR de, Giordano TJ, Greene LA, Goldstein DS, Lehnert H, Manger WM, Maris JM, Neumann HP, Pacak K, Shulkin BL, Smith DI, Tischler AS, Young WF Jr (2004) Malignant pheochromocytoma: current status and initiatives for future progress. Endocr Relat Cancer 11:423–436

    Article  PubMed  CAS  Google Scholar 

  • Finotto S, Krieglstein K, Schober A, Deimling F, Lindner K, Bruhl B, Beier K, Metz J, Garcia-Arraras JE, Roig-Lopez JL, Monaghan P, Schmid W, Cole TJ, Kellendonk C, Tronche F, Schutz G, Unsicker K (1999) Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells. Development 126:2935–2944

    PubMed  CAS  Google Scholar 

  • Funahashi H, Imai T, Tanaka Y, Tobinaga J, Wada M, Matsuyama T, Tsukamura K, Yamada F, Takagi H, Narita T, et al (1994) Discrepancy between PNMT presence and relative lack of adrenaline production in extra-adrenal pheochromocytoma. J Surg Oncol 57:196–200

    Article  PubMed  CAS  Google Scholar 

  • Geerlings A, Nunez E, Rodenstein L, Lopez-Corcuera B, Aragon C (2002) Glycine transporter isoforms show differential subcellular localization in PC12 cells. J Neurochem 82:58–65

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Minami K, Ueno S, Toyohira Y, Tsutsui M, Shigematsu A, Yanagihara N (2002) Up-regulation of noradrenaline transporter in response to prolonged exposure to ketamine. Naunyn Schmiedebergs Arch Pharmacol 365:406–412

    Article  PubMed  CAS  Google Scholar 

  • Hill GD, Pace V, Persohn E, Bresser C, Haseman JK, Tischler AS, Nyska A (2003) A comparative immunohistochemical study of spontaneous and chemically induced pheochromocytomas in B6C3F1 mice. Endocr Pathol 14:81–91

    Article  PubMed  Google Scholar 

  • Hökfelt T, Johannsson O, Goldstein M (1984) Central catecholamine neurons as revealed by immunohistochemistry with special reference to adrenaline neurons. In: Bjorkland A, Hökfelt T (Eds) Handbook of chemical neuroanatomy, vol. 2. Classical transmitters in the CNS, part 1. Elsevier, Amsterdam, pp 157–276

    Google Scholar 

  • Ikeda T, Kitayama S, Morita K, Dohi T (2001) Nerve growth factor down-regulates the expression of norepinephrine transporter in rat pheochromocytoma (PC12) cells. Mol Brain Res 86:90–100

    Article  PubMed  CAS  Google Scholar 

  • Isobe K, Nakai T, Yukimasa N, Nanmoku T, Takekoshi K, Nomura F (1998) Expression of mRNA coding for four catecholamine-synthesizing enzymes in human adrenal pheochromocytomas. Eur J Endocrinol 138:383–387

    Article  PubMed  CAS  Google Scholar 

  • Isobe K, Nakai T, Yashiro T, Nanmoku T, Yukimasa N, Ikezawa T, Suzuki E, Takekoshi K, Nomura F (2000) Enhanced expression of mRNA coding for the adrenaline-synthesizing enzyme phenylethanolamine-N-methyl transferase in adrenaline-secreting pheochromocytomas. J Urol 163:357–362

    Article  PubMed  CAS  Google Scholar 

  • Isobe K, Tatsuno I, Yashiro T, Nanmoku T, Takekoshi K, Kawakami Y, Nakai T (2003) Expression of mRNA for PACAP and its receptors in intra- and extra-adrenal human pheochromocytomas and their relationship to catecholamine synthesis. Regul Pept 110:213–217

    Article  PubMed  CAS  Google Scholar 

  • Kadota T, Yamaai T, Saito Y, Akita Y, Kawashima S, Moroi K, Inagaki N, Kadota K (1996) Expression of dopamine transporter at the tips of growing neurites of PC12 cells. J Histochem Cytochem 44:989–996

    PubMed  CAS  Google Scholar 

  • Kent C, Coupland RE (1981) On the uptake of exogenous catecholamines by adrenal chromaffin cells and nerve endings. Cell Tissue Res 221:371–383

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Miura Y, Nagatsu I, Nagura H (1992) Catecholamine synthesizing enzymes in 70 cases of functioning and non-functioning phaeochromocytoma and extra-adrenal paraganglioma. Virchows Arch A Pathol Anat Histopathol 421:25–32

    Article  PubMed  CAS  Google Scholar 

  • Kippenberger AG, Palmer DJ, Comer AM, Lipski J, Burton LD, Christie DL (1999) Localization of the noradrenaline transporter in rat adrenal medulla and PC12 cells: evidence for its association with secretory granules in PC12 cells. J Neurochem 73:1024–1032

    Article  PubMed  CAS  Google Scholar 

  • Kitayama S, Morita K, Dohi T (2001) Functional characterization of the splicing variants of human norepinephrine transporter. Neurosci Lett 312:108–112

    Article  PubMed  CAS  Google Scholar 

  • Lode HN, Bruchelt G, Seitz G, Gebhardt S, Gekeler V, Niethammer D, Beck J (1995) Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of monoamine transporters in neuroblastoma cell lines: correlations to meta-iodobenzylguanidine (MIBG) uptake and tyrosine hydroxylase gene expression. Eur J Cancer 31A:586–590

    Article  PubMed  CAS  Google Scholar 

  • Lorang D, Amara SG, Simerly RB (1994) Cell-type-specific expression of catecholamine transporters in the rat brain. J Neurosci 14:4903–4914

    PubMed  CAS  Google Scholar 

  • Mairs RJ, Livingstone A, Gaze MN, Wheldon TE, Barrett A (1994) Prediction of accumulation of 131I-labelled meta-iodobenzylguanidine in neuroblastoma cell lines by means of reverse transcription and polymerase chain reaction. Br J Cancer 70:97–101

    PubMed  CAS  Google Scholar 

  • Maurea S, Cuocolo A, Reynolds JC, Tumeh SS, Begley MG, Linehan WM, Norton JA, Walther MM, Keiser HR, Neumann RD (1993) Iodine-131-metaiodobenzylguanidine scintigraphy in preoperative and postoperative evaluation of paragangliomas: comparison with CT and MRI. J Nucl Med 34:173–179

    PubMed  CAS  Google Scholar 

  • McNeil AR, Blok BH, Koelmeyer TD, Burke MP, Hilton JM (2000) Phaeochromocytomas discovered during coronial autopsies in Sydney, Melbourne and Auckland. Aust NZ J Med 30:648–652

    CAS  Google Scholar 

  • Meijer WG, Copray SCVM, Hollema H, Kema IP, Zwart N, Mantingh-Otter I, Links TP, Willemse PHB, Vries EGE de (2003) Catecholamine synthesizing enzymes in carcinoid tumours and pheochromocytomas. Clin Chem 49:586–593

    Article  PubMed  CAS  Google Scholar 

  • Montero-Hadjadje M, Vaudry H, Turquier V, Leprince J, Do Rego JL, Yon L, Gallo-Payet N, Plouin PF, Anouar Y (2002) Localization and characterization of evolutionarily conserved chromogranin A-derived peptides in the rat and human pituitary and adrenal glands. Cell Tissue Res 310:223–236

    Article  PubMed  CAS  Google Scholar 

  • Pacak K, Linehan WM, Eisenhofer G, Walther MM, Goldstein DS (2001) Recent advances in genetics, diagnosis, localization, and treatment of pheochromocytoma. Ann Intern Med 134:315–329

    PubMed  CAS  Google Scholar 

  • Paczkowski FA, Bryan-Lluka LJ, Porzgen P, Bruss M, Bonisch H (1999) Comparison of the pharmacological properties of cloned rat, human, and bovine norepinephrine transporters. J Pharmacol Exp Ther 290:761–767

    PubMed  CAS  Google Scholar 

  • Phillips JK, Dubey R, Sesiashvili E, Takeda M, Christie DL, Lipski J (2001a) Differential expression of the noradrenaline transporter in adrenergic chromaffin cells, ganglion cells and nerve fibres of the rat adrenal medulla. J Chem Neuroanat 21:95–104

    Article  PubMed  CAS  Google Scholar 

  • Phillips JK, Goodchild AK, Dubey R, Sesiashvili E, Takeda M, Chalmers J, Pilowsky PM, Lipski J (2001b) Differential expression of catecholamine biosynthetic enzymes in the rat ventrolateral medulla. J Comp Neurol 432:20–34

    Article  PubMed  CAS  Google Scholar 

  • Portel-Gomes GM, Grimelius L, Johansson H, Wilander E, Stridsberg M (2001) Chromogranin A in human neuroendocrine tumors: an immunohistochemical study with region-specific antibodies. Am J Surg Pathol 25:1261–1267

    Article  PubMed  CAS  Google Scholar 

  • Prys-Roberts C (2000) Phaeochromocytoma-recent progress in its management. Br J Anaesth 85:44–57

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy S, Prasad PD, Kulanthaivel P, Leibach FH, Blakely RD, Ganapathy V (1993) Expression of a cocaine-sensitive norepinephrine transporter in the human placental syncytiotrophoblast. Biochemistry 32:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Renick SE, Kleven DT, Chan J, Stenius K, Milner TA, Pickel VM, Fremeau RTJ (1999) The mammalian brain high-affinity L-proline transporter is enriched preferentially in synaptic vesicles in a subpopulation of excitatory nerve terminals in rat forebrain. J Neurosci 19:21

    PubMed  CAS  Google Scholar 

  • Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR, Blakely RD (2000) Immunlocalization of the cocaine- and antidepressant sensitive l-norepinephrine transporter. J Comp Neurol 420:211–232

    Article  PubMed  CAS  Google Scholar 

  • Shapiro B, Sisson JC, Shulkin BL, Gross MD, Zempel S (1995) The current status of meta-iodobenzylguanidine and related agents for the diagnosis of neuro-endocrine tumors. Q J Nucl Med 39:3–8

    PubMed  CAS  Google Scholar 

  • Sisson JC, Shulkin BL (1999) Nuclear medicine imaging of pheochromocytoma and neuroblastoma. Q J Nucl Med 43:217–223

    PubMed  CAS  Google Scholar 

  • Suzuki T, Kachi T (1996) Similarities and differences in supporting and chromaffin cells in the adrenal medullae: an immunhistochemical study. Anat Rec 244:358–365

    Article  PubMed  CAS  Google Scholar 

  • Tischler AS, Tsokas P, Shahsavari M, Powers JF (1998) Immunoreactivity of normal rabbit serum with epinephrine (E) cells of the rat adrenal medulla after microwave antigen retrieval. Cell Tissue Res 293:563–566

    Article  PubMed  CAS  Google Scholar 

  • Weiss C, Cahill AL, Laslop A, Fischer-Colbrie R, Perlman RL, Winkler H (1996) Differences in the composition of chromaffin granules in adrenaline and noradrenaline containing cells of bovine adrenal medulla. Neurosci Lett 211:29–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Courtney Reddrop for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline K. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleary, S., Brouwers, F.M., Eisenhofer, G. et al. Expression of the noradrenaline transporter and phenylethanolamine N-methyltransferase in normal human adrenal gland and phaeochromocytoma. Cell Tissue Res 322, 443–453 (2005). https://doi.org/10.1007/s00441-005-0026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0026-y

Keywords

Navigation