Skip to main content
Log in

NPY-mRNA expressions in the nucleus accumbens, caudate putamen and cerebral cortex of apomorphine-susceptible and apomorphine-unsusceptible rats

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Using the apomorphine-induced stereotyped gnawing response as a selection criterion, two distinct groups of rats can be distinguished, apomorphine-susceptible (APO-SUS) and apomorphine-unsusceptible (APO-UNSUS) rats. These two lines differ in several components of both striatal and extrastriatal areas. This study deals with the expression of neuropeptide Y (NPY)mRNA-expressing neurons in the nucleus accumbens, caudate putamen and cerebral cortex of both rat lines, using non-radioactive in situ hybridisation. The morphology of the neurons in the three regions is similar, viz. oblong, rectangular or triangular, with two or three processes. The neurons are homogeneously distributed in all regions, and in the nucleus accumbens they are particularly numerous ventrally to the anterior commissure. Using automated image analysis, the mean numerical density of NPYmRNA-positive neurons per brain region and the mean NPYmRNA expression level per neuron per brain region were determined. No differences appear in the numerical densities of NPYmRNA-containing neurons in the nucleus accumbens, caudate putamen and cortex between APO-SUS and APO-UNSUS rats. However, distinct differences between the rat lines are present in the level of NPYmRNA expression per neuron in the nucleus accumbens and in the caudate putamen, showing that NPY contributes to the differential neurochemical make-up of these rat lines that is responsible for their obvious differences in behaviour, physiology and immune competence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–e.
Fig. 3a, b.

Similar content being viewed by others

References

  • Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR, Polak JM (1983) Neuropeptide Y distribution in the rat brain. Nature 221:877–879

    CAS  Google Scholar 

  • Aoki C, Pickel VM (1988) Neuropeptide Y-containing neurons in the rat striatum: ultrastructure and cellular relations with tyrosine hydroxylase-containing terminals and with astrocytes. Brain Res 459:205–225

    Article  CAS  PubMed  Google Scholar 

  • Aoki C, Pickel VM (1990) Neuropeptide Y in cortex and striatum: ultrastructural distribution and coexistence with classical neurotransmitters and neuropeptides. Ann N Y Acad Sci 611:186–205

    CAS  PubMed  Google Scholar 

  • Ault DT, Werling LL (1997) Differential modulation of NMDA-stimulated (3H)dopamine release from rat striatum by neuropeptide Y and sigma receptor ligands. Brain Res 760:210–217

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Chattha GK, Martin JB (1986a) A comparison of regional somatostatin and neuropeptide Y distribution in rat striatum and brain. Brain Res 377:240–245

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Frank RC, Ellison DW, Martin JB (1986b) The effect of neuropeptide Y on striatal catecholamines. Neurosci Lett 71:118–123

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Mazurek MF, Martin JB (1987) A comparison of somatostatin and neuropeptide Y distribution in monkey brain. Brain Res 405:213–219

    Article  CAS  PubMed  Google Scholar 

  • Bendotti C, Tarizzo G, Fumagalli F, Baldessari S, Samanin R (1993) Increased expression of preproneuropeptide Y and preprosomatostatin mRNA in striatum after selective serotonergic lesions in rats. Neurosci Lett 160:197–200

    Article  CAS  PubMed  Google Scholar 

  • Cerda-Reverter JM, Larhammar D (2000) Neuropeptide Y family of peptides: structure, anatomical expression, function, and molecular evolution. Biochem Cell Biol 78:371–392

    Article  CAS  PubMed  Google Scholar 

  • Chronwall BM, DiMaggio DA, Massari VJ, Pickel VP, Ruggiero DA, O'Donahue TL (1985) The anatomy of neuropeptide-Y-containing neurons in rat brain. Neuroscience 15:1159–1181

    Article  CAS  PubMed  Google Scholar 

  • Cintra A, Fuxe K, Solfrini V, Agnati LF, Tinner B, Wikstrom A-C, Staines W, Okret S, Gustafsson J-A (1991) Central peptidergic neurons as targets for glucocorticoid action. Evidence for the presence of glucocorticoid receptor immunoreactivity in various types of classes of peptidergic neurons. J Steroid Biochem Mol Biol 40:93–103

    Article  CAS  PubMed  Google Scholar 

  • Coenders C, Kerbusch SML, Vossen JMH, Cools AR (1992) Problem-solving behaviour in apomorphine-susceptible and unsusceptible rats. Physiol Behav 52:321–326

    Article  CAS  PubMed  Google Scholar 

  • Compan V, Dusticier N, Nieoullon A, Daszuta A (1996) Opposite changes in striatal neuropeptide Y immunoreactivity after partial and complete serotonergic depletion in the rat. Synapse 24:87–96

    Article  CAS  PubMed  Google Scholar 

  • Cools AR, Gingras MA (1998) Nijmegen high and low responders to novelty: a new tool in the search after the neurobiology of drug abuse liability. Pharmacol Biochem Behav 60:151–159

    CAS  PubMed  Google Scholar 

  • Cools AR, Peeters BWMM (1992) Differences in spike-wave discharges in two selection lines characterized by opposite dopaminergic activities. Neurosci Lett 134:253–256

    Article  CAS  PubMed  Google Scholar 

  • Cools AR, Brachten R, Heeren D, Willemsen A, Ellenbroek B (1990) Search after neurobiological profile of individual-specific features of Wistar rats. Brain Res Bull 24:49–69

    Google Scholar 

  • Cools AR, Dierx J, Coenders C, Heeren D, Ried S, Jenks BG, Ellenbroek B (1993a) Apomorphine-susceptible and apomorphine-unsusceptible Wistar rats differ in novelty-induced changes in hippocampal dynorphin B expression and two-way active avoidance: a new key in the search for the role of the hippocampal-accumbens axis. Behav Brain Res 55:213–221

    Article  CAS  PubMed  Google Scholar 

  • Cools AR, Rots NY, Ellenbroek B, de Kloet ER (1993b) Bimodal shape of individual variation in behaviour of Wistar rats: the overall outcome of a fundamentally different make-up and reactivity of the brain, the endocrinological and the immunological system. Neuropsychobiology 28:100–105

    Google Scholar 

  • Cools AR, Brachten R, Coenders C, Dierx J, Ried S, Ellenbroek B (1994) Apomorphine-susceptible and apomorphine-unsusceptible rats: a new tool in the search after the function of the striatum in switching behavioural strategies. In: Percheron G (ed) The basal ganglia IV. Plenum, New York, pp 507–515

  • Dean RG, White BD (1990) Neuropeptide Y expression in rat brain: effects of adrenalectomy. Neurosci Lett 114:339–344

    Article  CAS  PubMed  Google Scholar 

  • De Quidt ME, Emson PC (1986) Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system. II. Immunohistochemical analysis. Neuroscience 18:545–618

    Article  PubMed  Google Scholar 

  • DiMaggio DA, Chronwall BM, Buchanan K, O'Donohue TL (1985) Pancreatic polypeptide immunoreactivity in rat brain is actually neuropeptide Y. Neuroscience 15:1149–1157

    Article  CAS  PubMed  Google Scholar 

  • Dumont Y, Martel J, Fournier A, St-Pierre S, Quirion R (1992a) Neuropeptide Y expression in brain is differentially regulated by midbrain dopamine neurons. Exp Brain Res 80:489–500

    Google Scholar 

  • Dumont Y, Martel J, Fournier A, St-Pierre S, Quirion R (1992b) Neuropeptide Y and neuropeptide Y receptor subtypes in brain and peripheral tissues. Prog Neurobiol 38:125–167

    Article  CAS  PubMed  Google Scholar 

  • Garside S, Mazurek MF (1997) Role of glutamate receptor subtypes in the differential release of somatostatin, neuropeptide Y, and substance P in primary serum-free cultures of striatal neurons. Synapse 27:161–167

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Berger B, Lesur A, Borsotti JP, Fevret A (1987) Somatostatin 28 and neuropeptide Y innervation in the septal area and related cortical and subcortical structures of the human brain. Distribution, relationship and evidence for differential coexistence. Neuroscience 22:49–73

    Article  CAS  PubMed  Google Scholar 

  • Gehlert DR, Chronwall BM, Schafer MP, O'Donohue TL (1987) Localization of neuropeptide Y messenger ribonucleic acid in rat and mouse brain by in situ hybridization. Synapse 1:25–31

    CAS  PubMed  Google Scholar 

  • Heilig M, Murison R (1987) Intracerebroventricular neuropeptide Y suppresses open field and home cage activity in the rat. Regul Pept 19:221–231

    Article  CAS  PubMed  Google Scholar 

  • Heilig M, Wahlestedt C, Widerlov E (1988) Neuropeptide Y (NPY)-induced suppression of activity in the rat: evidence for NPY receptor heterogeneity and for interaction with alpha-adrenoceptors. Eur J Pharmacol 157:205–213

    Article  CAS  PubMed  Google Scholar 

  • Huh Y, Kim C, Lee W, Kim J, Ahn H (1997) Age-related change in the neuropeptide Y and NADPH-diaphorase-positive neurons in the cerebral cortex and striatum of aged rats. Neurosci Lett 223:157–160

    Article  CAS  PubMed  Google Scholar 

  • Josselyn SA, Beninger RJ (1993) Neuropeptide Y: intra accumbens injections produce a place preference that is blocked by cis-flupenthixol. Pharmacol Biochem Behav 46:543–552

    Article  CAS  PubMed  Google Scholar 

  • Kavelaars A, Heijnen CJ, Ellenbroek BE, van Loveren H, Cools AR (1997) Apomorphine-susceptible and apomorphine-unsusceptible Wistar rats differ in their susceptibility to inflammatory and infectious diseases: a study on rats with group-specific differences in structure and reactivity of hypothalamic-pituitary-adrenal axis. J Neurosci 17:2580–2584

    CAS  PubMed  Google Scholar 

  • Kerkerian L, Bosler O, Pelletier G, Nieoullon A (1986) Striatal neuropeptide Y neurons are under the influence of the nigrostriatal dopaminergic pathway: immunohistochemical evidence. Neurosci Lett 66:106–112

    Article  CAS  PubMed  Google Scholar 

  • Larhammer D, Ericsson A, Persson H (1987) Structure and expression of the rat neuropeptide Y gene. Proc Natl Acad Sci U S A 84:2068–2072

    PubMed  Google Scholar 

  • Lee EY, Cha CI (1998) Postnatal development of somatostatin and neuropeptide Y-immunoreactive neurons in rat cerebral cortex: a double-labeling immunohistochemical study. Int J Dev Neurosci 16:63–72

    Article  CAS  PubMed  Google Scholar 

  • Lindefors N, Brene S, Herrera-Marschitz M, Persson H (1990a) Neuropeptide gene expression in brain is differentially regulated by midbrain dopamine neurons. Exp Brain Res 80:489–500

    CAS  PubMed  Google Scholar 

  • Lindefors N, Brene S, Herrera-Marschitz M, Persson H (1990b) Regulation of neuropeptide Y gene expression in rat brain. Ann N Y Acad Sci 611:175–185

    CAS  PubMed  Google Scholar 

  • Massari VJ, Chan J, Chronwall BM, O'Donohue TL, Oertel WH, Pickel VM (1988) Neuropeptide Y in the rat nucleus accumbens: ultrastructural localization in aspiny neurons receiving input from GABAergic terminals. J Neurosci Res 19:171–186

    CAS  PubMed  Google Scholar 

  • Midgley LP, Bush LG, Gibb JW, Hanson GR (1993) Differential regulation of neuropeptide Y in limbic structures of the rat. J Pharmacol Exp Ther 267:707–713

    CAS  PubMed  Google Scholar 

  • Midgley LP, Wagstaff JD, Singh NA, Bush LG, Gibb JW, Hanson GR (1994) Dynamic dopaminergic regulation of neuropeptide Y systems in discrete striatal and accumbens regions. Eur J Pharmacol 251:191–199

    Article  CAS  PubMed  Google Scholar 

  • Morris BJ (1989) Neuronal localisation of neuropeptide Y gene expression in rat brain. J Comp Neurol 290:358–368

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, New York

  • Rots NY, Cools AR, de Jong J, de Kloet ER (1995) Corticosteroid feedback resistance in rats genetically selected for increased dopamine responsiveness. J Neuroendocrinol 7:153–161

    CAS  PubMed  Google Scholar 

  • Rots NY, Cools AR, Oitzl MS, de Jong J, Sutanto W, de Kloet ER (1996a) Divergent prolactin and pituitary-adrenal activity in rats selectively bred for different dopamine responsiveness. Endocrinology 137:1678–1686

    CAS  PubMed  Google Scholar 

  • Rots NY, de Jong J, Workel JO, Levine S, Cools AR, de Kloet ER (1996b) Neonatal maternally deprived rats have as adults elevated basal pituitary-adrenal activity and enhanced susceptibility to apomorphine. J Neuroendocrinol 8:501–506

    CAS  PubMed  Google Scholar 

  • Salin P, Kerkerian L, Nieoullon A (1990) Expression of neuropeptide Y immunoreactivity in the rat nucleus accumbens is under the influence of the dopaminergic mesencephalic pathway. Exp Brain Res 81:363–371

    CAS  PubMed  Google Scholar 

  • Salin P, Nieoullon A, Kerkerian-Le Goff L (1994) Reversal of the adaptive response of neuropeptide Y neurons in the rat striatum to nigrostriatal dopamine deafferentation by the N-methyl-d-aspartate antagonist dizocilpine maleate. Neuroscience 61:93–105

    Article  CAS  PubMed  Google Scholar 

  • Smialowska M (1995) An inhibitory dopaminergic regulation of the neuropeptide Y immunoreactivity expression in the rat cerebral cortex neurons. Neuroscience 66:589–595

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Parent A (1986) Neuropeptide Y-immunoreactive neurons in the striatum of cat and monkey: morphological characteristics, intrinsic organization and co-localization with somatostatin. Brain Res 372:241–252

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW (1992) Brain map: structure of the rat brain. Elsevier Science, Amsterdam

    Google Scholar 

  • Tatemoto K (1982) Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci U S A 79:5485–5489

    CAS  PubMed  Google Scholar 

  • Tuinhof R, Laurent FYSC, Ebbers RGE, Smeets WJAJ, van Riel MCHM, Roubos EW (1993) Immunocytochemistry and in situ hybridization of neuropeptide Y in the hypothalamus of Xenopus laevis in relation to background adaptation. Neuroscience 55:667–675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank Mr. Dick Heeren for statistical evaluation and Dr. Hans J. Meek for advice on morphometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. W. Roubos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roubos, E.W., Spooren, W.P.J.M., Martens, G.J.M. et al. NPY-mRNA expressions in the nucleus accumbens, caudate putamen and cerebral cortex of apomorphine-susceptible and apomorphine-unsusceptible rats. Cell Tissue Res 313, 209–215 (2003). https://doi.org/10.1007/s00441-003-0760-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0760-y

Keywords

Navigation