Skip to main content

Advertisement

Log in

Gene therapies in canine models for Duchenne muscular dystrophy

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

A Correction to this article was published on 19 February 2019

This article has been updated

Abstract

Therapies for Duchenne muscular dystrophy (DMD) must first be tested in animal models to determine proof-of-concept, efficacy, and importantly, safety. The murine and canine models for DMD are genetically homologous and most commonly used in pre-clinical testing. Although the mouse is a strong, proof-of-concept model, affected dogs show more analogous clinical and immunological disease progression compared to boys with DMD. As such, evaluating genetic therapies in the canine models may better predict response at the genetic, phenotypic, and immunological levels. We review the use of canine models for DMD and their benefits as it pertains to genetic therapy studies, including gene replacement, exon skipping, and gene editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 19 February 2019

    The authors would like to correct the following information concerning Conflict of Interest.

References

  • Aartsma-Rus A et al (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34(2):135–144 (review)

    Article  CAS  PubMed  Google Scholar 

  • Acosta AR et al (2016) Use of the six-minute walk test to characterize golden retriever muscular dystrophy. Neuromuscul Disord 26(12):865–872

    Article  PubMed  Google Scholar 

  • Amoasii L et al (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362(6410):86–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki Y et al (2012) Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci USA 109(34):13763–13768

    Article  PubMed  PubMed Central  Google Scholar 

  • Beltran WA et al (2012) Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci USA 109(6):2132–2137

    Article  PubMed  PubMed Central  Google Scholar 

  • Bengtsson NE et al (2017) Corrigendum: muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:16007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch SM et al (2017) A blinded, placebo-controlled systemic gene therapy efficacy study in the GRMD model of Duchenne muscular dystrophy. Mol Ther 25:193

    Google Scholar 

  • Bladen CL et al (2015) The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 36(4):395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury AM et al (2018) AAVrh10 gene therapy ameliorates central and peripheral nervous system disease in canine globoid cell leukodystrophy (Krabbe disease). Hum Gene Ther 29(7):785–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulfield G et al (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81(4):1189–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callan MB et al (2016) Successful phenotype improvement following gene therapy for severe hemophilia A in privately owned dogs. PLoS One 11(3):e0151800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deconinck N et al (1996) Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc Natl Acad Sci USA 93:3570–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowling P et al (2004) Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy. Biochem J 379(Pt 2):479–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echigoya Y, Yokota T (2014) Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Nucleic Acid Ther 24(1):57–68

    Article  CAS  PubMed  Google Scholar 

  • Echigoya Y et al (2015) In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy. PLoS One 10(3):e0120058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echigoya Y et al (2017) Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci USA 114(16):4213–4218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z et al (2014) Characteristics of magnetic resonance imaging biomarkers in a natural history study of golden retriever muscular dystrophy. Neuromuscul Disord 24(2):178–191

    Article  PubMed  Google Scholar 

  • Fletcher S et al (2010) Dystrophin isoform induction in vivo by antisense-mediated alternative splicing. Mol Ther 18(6):1218–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert R et al (2003) Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum Mol Genet 12:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Gregorevic P et al (2008) Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice. Mol Ther 16:657–664

    Article  CAS  PubMed  Google Scholar 

  • Grimm T et al (2012) Risk assessment and genetic counseling in families with Duchenne muscular dystrophy. Acta Myol 31(3):179–183

    PubMed  PubMed Central  Google Scholar 

  • Hoffman EP et al (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928

    Article  CAS  PubMed  Google Scholar 

  • Howell JM et al (1998a) Direct dystrophin and reporter gene transfer into dog muscle in vivo. Muscle Nerve 21(2):159–165

    Article  CAS  PubMed  Google Scholar 

  • Howell JM et al (1998b) High-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscle of dystrophic dogs: prolongation of expression with immunosuppression. Hum Gene Ther 9(5):629–634

    Article  CAS  PubMed  Google Scholar 

  • Jearawiriyapaisarn N et al (2008) Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 16(9):1624–1629

    Article  CAS  PubMed  Google Scholar 

  • Jooss K et al (1998) Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 72:4212–4223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komaki H et al (2018) Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan0713

    Article  PubMed  Google Scholar 

  • Kornegay JN (2017) The golden retriever model of Duchenne muscular dystrophy. Skelet Muscle 7(1):9. (review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornegay JN et al (1988) Muscular dystrophy in a litter of golden retriever dogs. Muscle Nerve 11(10):1056–1064

    Article  CAS  PubMed  Google Scholar 

  • Kornegay JN et al (2010) Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs. Mol Ther 18(8):1501–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornegay JN et al (2012) Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm Genome 23(1–2):85–108 (review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornegay JN et al (2014) Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 55(1):119–149 (review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis SC et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490(7491):187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Guiner C et al (2017) Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 8:16105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long C et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403

    Article  CAS  PubMed  Google Scholar 

  • Lu QL et al (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9(8):1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Matthews E et al (2016) Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev 5:CD003725

    Google Scholar 

  • Monaco AP et al (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2(1):90–95

    Article  CAS  PubMed  Google Scholar 

  • Nachman MW (2004) Haldane and the first estimates of the human mutation rate. J Genet 83(3):231–233 (Erratum in: J Genet. 2008 Dec;87(3):317)

    Article  PubMed  Google Scholar 

  • Nichols TC et al (2016) Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies. J Thromb Haemost 14(5):894–905

    Article  CAS  PubMed  Google Scholar 

  • Ousterout DG et al (2013) Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 21(9):1718–1726 (Erratum in Mol Ther. 21(11):2130)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patronek GJ et al (1997) Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol A Biol Sci Med Sci 52(3):B171–B178

    Article  CAS  PubMed  Google Scholar 

  • Ragot T et al (1993) Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361:647–650

    Article  CAS  PubMed  Google Scholar 

  • Ramos J, Chamberlain JS (2015) Gene therapy for Duchenne muscular dystrophy. Expert Opin Orphan Drugs 3:1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatzberg SJ et al (1999) Molecular analysis of a spontaneous dystrophin ‘knockout’ dog. Neuromuscul Disord 9(5):289–295

    Article  CAS  PubMed  Google Scholar 

  • Schneider SM et al (2018) Glucose metabolism as a pre-clinical biomarker for the golden retriever model of Duchenne muscular dystrophy. Mol Imaging Biol 20(5):780–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimatsu Y et al (2003) Canine X-linked muscular dystrophy in Japan (CXMDJ). Exp Anim 52:93–97

    Article  CAS  PubMed  Google Scholar 

  • Shimo T et al (2018) Designing effective antisense oligonucleotides for exon skipping. Methods Mol Biol 1687:143–155

    Article  CAS  PubMed  Google Scholar 

  • Sicinski P et al (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244(4912):1578–1580

    Article  CAS  PubMed  Google Scholar 

  • Sneddon LU et al (2017) Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol 220(Pt 17):3007–3016

    Article  PubMed  Google Scholar 

  • Suzuki K et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabebordbar M et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al (2007a) Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther 18(1):18–26

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al (2007b) Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 15(6):1160–1166

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al Chamberlain JS, Tapscott SJ, Storb R (2009) Gene therapy in large animal models of muscular dystrophy. ILAR J 50(2):187–198. Review

    Article  CAS  PubMed  Google Scholar 

  • Willmann R et al (2015) Best practices and standard protocols as a tool to enhance translation for neuromuscular disorders. J Neuromuscul Dis 2(2):113–117

    Article  PubMed  Google Scholar 

  • Wirth T et al (2013) History of gene therapy. Gene 525(2):162–169

    Article  CAS  PubMed  Google Scholar 

  • Wu B et al (2009) Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther 17(5):864–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X et al (1996) Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70:8098–8108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota T et al (2007) Optimizing exon skipping therapies for DMD. Acta Myol 26(3):179–184. Review

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota T et al (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65(6):667–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokota T et al (2012) Extensive and prolonged restoration of dystrophin expression with vivo-morpholino-mediated multiple exon skipping in dystrophic dogs. Nucleic Acid Ther 22(5):306–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Y et al (2015) Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet 24(20):5880–5890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3(4):e1602814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • https://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/ucm581222.htm. Accessed Jan 2019

  • https://ghr.nlm.nih.gov/primer/therapy/genetherapy. Accessed Jan 2019

Download references

Acknowledgements

We acknowledge Sara Mata López, Dr. Sharla Birch, Amanda Bettis, and Cynthia Balog-Alvarez for their work with the GRMD model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter P. Nghiem.

Ethics declarations

Conflict of interest

Dr. Nghiem is a paid consultant for Agada Biosciences. Dr. Kornegay does not have any conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nghiem, P.P., Kornegay, J.N. Gene therapies in canine models for Duchenne muscular dystrophy. Hum Genet 138, 483–489 (2019). https://doi.org/10.1007/s00439-019-01976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-019-01976-z

Navigation