Skip to main content

Advertisement

Log in

Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aartsma-Rus A, Ferlini A, Goemans N, Pasmooij AM, Wells DJ, Bushby K, Vroom E, Balabanov P (2014) Translational and regulatory challenges for exon skipping therapies. Hum Gene Ther 25:885–892

    Article  CAS  PubMed  Google Scholar 

  • Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD, Partridge TA, Lu QL (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12:175–177

    Article  CAS  PubMed  Google Scholar 

  • Aoki Y, Yokota T, Nagata T, Nakamura A, Tanihata J, Saito T, Duguez SM, Nagaraju K, Hoffman EP, Partridge T et al (2012) Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci U S A 109:13763–13768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnould S, Delenda C, Grizot S, Desseaux C, Paques F, Silva GH, Smith J (2011) The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Design Selection PEDS 24:27–31

    Article  CAS  Google Scholar 

  • Athanasopoulos T, Graham IR, Foster H, Dickson G (2004) Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther 11(Suppl 1):S109–S121

    Article  CAS  PubMed  Google Scholar 

  • Athanasopoulos T, Foster H, Foster K, Dickson G (2011) Codon optimization of the microdystrophin gene for Duchene muscular dystrophy gene therapy. Methods Mol Biol 709:21–37

    Article  CAS  PubMed  Google Scholar 

  • Baxter P (2010) Diagnosis and management of Duchenne muscular dystrophy. Dev Med Child Neurol 52:313

    Article  PubMed  Google Scholar 

  • Bertoni C, Jarrahian S, Wheeler TM, Li Y, Olivares EC, Calos MP, Rando TA (2006) Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc Natl Acad Sci USA 103:419–424

    Article  CAS  PubMed  Google Scholar 

  • Bish LT, Sleeper MM, Forbes SC, Wang B, Reynolds C, Singletary GE, Trafny D, Morine KJ, Sanmiguel J, Cecchini S et al (2012) Long-term restoration of cardiac dystrophin expression in golden retriever muscular dystrophy following rAAV6-mediated exon skipping. Mol Ther 20:580–589

    Article  CAS  PubMed  Google Scholar 

  • Bolukbasi MF, Gupta A, Wolfe SA (2016) Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods 13:41–50

    Article  CAS  PubMed  Google Scholar 

  • Bostick B, Yue YP, Lai Y, Long C, Li DJ, Duan DS (2008) Adeno-associated virus serotype-9 microdystrophin gene therapy ameliorates electrocardiographic abnormalities in mdx mice. Hum Gene Ther 19:851–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostick B, Shin JH, Yue YP, Duan DS (2011) AAV-microdystrophin therapy improves cardiac performance in aged female mdx mice. Mol Ther 19:1826–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostick B, Shin JH, Yue Y, Wasala NB, Lai Y, Duan D (2012) AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy. J Mol Cell Cardiol 53:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapdelaine P, Pichavant C, Rousseau J, Paques F, Tremblay JP (2010) Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther 17:846–858

    Article  CAS  PubMed  Google Scholar 

  • Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548

    Article  CAS  PubMed  Google Scholar 

  • Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ et al (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crapo RO, Casaburi R, Coates AL, Enright PL, MacIntyre NR, McKay RT, Johnson D, Wanger JS, Zeballos RJ, Bittner V et al (2002) ATS statement: guidelines for the six-minute walk test. Am J Resp Crit Care 166:111–117

    Article  Google Scholar 

  • Crow JF (2000) The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet 1:40–47

    Article  CAS  PubMed  Google Scholar 

  • Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RCR (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10:610–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittrich S, Tuerk M, Haaker G, Greim V, Buchholz A, Burkhardt B, Fujak A, Trollmann R, Schmid A, Schroeder R (2015) Cardiomyopathy in duchenne muscular dystrophy: current value of clinical, electrophysiological and imaging findings in children and teenagers. Klin Padiatr 227:225–231

    Article  CAS  PubMed  Google Scholar 

  • D’Orsogna L, O’Shea JP, Miller G (1988) Cardiomyopathy of Duchenne muscular dystrophy. Pediatr Cardiol 9:205–213

    Article  PubMed  Google Scholar 

  • Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum Gene Ther 17:1077–1094

    Article  CAS  PubMed  Google Scholar 

  • England SB, Nicholson LVB, Johnson MA, Forrest SM, Love DR, Zubrzyckagaarn EE, Bulman DE, Harris JB, Davies KE (1990) Very mild muscular-dystrophy associated with the deletion of 46-percent of dystrophin. Nature 343:180–182

    Article  CAS  PubMed  Google Scholar 

  • Falzarano MS, Scotton C, Passarelli C, Ferlini A (2015) Duchenne muscular dystrophy: from diagnosis to therapy. Molecules 20:18168–18184

    Article  CAS  PubMed  Google Scholar 

  • Farini A, Razini P, Erratico S, Torrente Y, Meregalli M (2009) Cell based therapy for Duchenne muscular dystrophy. J Cell Physiol 221:526–534

    Article  CAS  PubMed  Google Scholar 

  • Farini A, Villa C, Manescu A, Fiori F, Giuliani A, Razini P, Sitzia C, Del Fraro G, Belicchi M, Meregalli M et al (2012) Novel insight into stem cell trafficking in dystrophic muscles. Int J Nanomed 7:3059–3067

    Google Scholar 

  • Filareto A, Parker S, Darabi R, Borges L, Iacovino M, Schaaf T, Mayerhofer T, Chamberlain JS, Ervasti JM, McIvor RS et al (2013) An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 4:1549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flanigan KM, Dunn DM, von Niederhausern A, Soltanzadeh P, Gappmaier E, Howard MT, Sampson JB, Mendell JR, Wall C, King WM et al (2009) Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat 30:1657–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Epstein BE, Schaffer DV (2016) Genome engineering using adeno-associated virus: basic and clinical research applications. Mol Ther 24:458–464

    Article  CAS  PubMed  Google Scholar 

  • Gersbach CA, Gaj T, Barbas CF 3rd (2014) Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc Chem Res 47:2309–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibney E (2016) The science to look out for in 2016. Nature 529:14–15

    Article  CAS  PubMed  Google Scholar 

  • Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, Holling T, Janson AA, Platenburg GJ, Sipkens JA et al (2011) Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 364:1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Goemans N, Klingels K, van den Hauwe M, Boons S, Verstraete L, Peeters C, Feys H, Buyse G (2013a) Six-minute walk test: reference values and prediction equation in healthy boys aged 5 to 12 years. PLoS ONE 8:e84120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goemans N, van den Hauwe M, Wilson R, van Impe A, Klingels K, Buyse G (2013b) Ambulatory capacity and disease progression as measured by the 6-minute-walk-distance in Duchenne muscular dystrophy subjects on daily corticosteroids. Neuromuscular disorders: NMD 23:618–623

    Article  PubMed  Google Scholar 

  • Gonzalez-Hilarion S, Beghyn T, Jia J, Debreuck N, Berte G, Mamchaoui K, Mouly V, Gruenert DC, Deprez B, Lejeune F (2012) Rescue of nonsense mutations by amlexanox in human cells. Orphanet journal of rare diseases 7:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L, Danos O (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306:1796–1799

    Article  CAS  PubMed  Google Scholar 

  • Goyenvalle A, Babbs A, Wright J, Wilkins V, Powell D, Garcia L, Davies KE (2012) Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Hum Mol Genet 21:2559–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyenvalle A, Griffith G, Babbs A, El Andaloussi S, Ezzat K, Avril A, Dugovic B, Chaussenot R, Ferry A, Voit T et al (2015) Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 21:270–275

    CAS  PubMed  Google Scholar 

  • Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M, Meuse L, Finn E, Adams ME, Froehner SC, Murry CE et al (2006) rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 12:787–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorevic P, Blankinship MJ, Allen JM, Chamberlain JS (2008) Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice. Mol Ther J Am Soc Gene Ther 16:657–664

    Article  CAS  Google Scholar 

  • Grimm T, Meng G, Liechti-Gallati S, Bettecken T, Muller CR, Muller B (1994) On the origin of deletions and point mutations in Duchenne muscular dystrophy: most deletions arise in oogenesis and most point mutations result from events in spermatogenesis. J Med Genet 31:183–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJB, Kunkel LM (2015) The Pathogenesis and Therapy of Muscular Dystrophies. Annu Rev Genom Hum G 16:281

  • Gussoni E, Pavlath GK, Lanctot AM, Sharma KR, Miller RG, Steinman L, Blau HM (1992) Normal dystrophin transcripts detected in duchenne muscular-dystrophy patients after myoblast transplantation. Nature 356:435–438

    Article  CAS  PubMed  Google Scholar 

  • Heemskerk H, de Winter C, van Kuik P, Heuvelmans N, Sabatelli P, Rimessi P, Braghetta P, van Ommen GJ, de Kimpe S, Ferlini A et al (2010) Preclinical PK and PD studies on 2′-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Mol Ther J Am Soc Gene Ther 18:1210–1217

    Article  CAS  Google Scholar 

  • Helderman-van den Enden AT, Straathof CS, Aartsma-Rus A, den Dunnen JT, Verbist BM, Bakker E, Verschuuren JJ, Ginjaar HB (2010) Becker muscular dystrophy patients with deletions around exon 51; a promising outlook for exon skipping therapy in Duchenne patients. Neuromuscular disorders: NMD 20:251–254

    Article  CAS  PubMed  Google Scholar 

  • Himeda CL, Chen X, Hauschka SD (2011) Design and testing of regulatory cassettes for optimal activity in skeletal and cardiac muscles. Methods Mol Biol 709:3–19

    Article  CAS  PubMed  Google Scholar 

  • Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  • Hoffman EP, Kunkel LM, Angelini C, Clarke A, Johnson M, Harris JB (1989) Improved diagnosis of Becker muscular dystrophy by dystrophin testing. Neurology 39:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Hollinger K, Chamberlain JS (2015) Viral vector-mediated gene therapies. Curr Opin Neurol 28:522–527

    Article  CAS  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyombe-Engembe JP, Ouellet DL, Barbeau X, Rousseau J, Chapdelaine P, Lague P, Tremblay JP (2016) efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method. Mol Ther Nucleic Acids 5:e283

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Sun Y, Xie L, Mao XO, Childs J, Peel A, Logvinova A, Banwait S, Greenberg DA (2005) Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol Dis 18:366–374

    Article  CAS  PubMed  Google Scholar 

  • Jirka S, Aartsma-Rus A (2015) An update on RNA-targeting therapies for neuromuscular disorders. Curr Opin Neurol 28:515–521

    Article  CAS  PubMed  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kim S, Kim S, Park J, Kim JS (2016) Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res 26:406–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kole R, Krieg AM (2015) Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 87:104–107

    Article  CAS  PubMed  Google Scholar 

  • Koo T, Okada T, Athanasopoulos T, Foster H, Takeda S, Dickson G (2011) Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog. J Gene Med 13:497–506

    Article  CAS  PubMed  Google Scholar 

  • Koo T, Popplewell L, Athanasopoulos T, Dickson G (2014) Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum Gene Ther 25:98–108

    Article  CAS  PubMed  Google Scholar 

  • Kornegay JN, Li J, Bogan JR, Bogan DJ, Chen C, Zheng H, Wang B, Qiao C, Howard JF Jr, Xiao X (2010) Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs. Mol Ther J Am Soc Gene Ther 18:1501–1508

    Article  CAS  Google Scholar 

  • Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Law PK, Goodwin TG, Fang Q, Duggirala V, Larkin C, Florendo JA, Kirby DS, Deering MB, Li HJ, Chen M et al (1992) Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell Transplant 1:235–244

    CAS  PubMed  Google Scholar 

  • Le Guiner C, Montus M, Servais L, Cherel Y, Francois V, Thibaud JL, Wary C, Matot B, Larcher T, Guigand L et al (2014) Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 22:1923–1935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JJ, Yokota T (2013) Antisense therapy in neurology. J Personalized Med 3:144–176

    Article  CAS  Google Scholar 

  • Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L et al (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H et al (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem cell reports 4:143–154

    Article  CAS  PubMed  Google Scholar 

  • Liu MJ, Yue YP, Harper SQ, Grange RW, Chamberlain JS, Duan DS (2005) Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol Ther 11:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN (2014) Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345:1184–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2015) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. doi:10.1126/science.aad5725

    Google Scholar 

  • Lostal W, Kodippili K, Yue Y, Duan D (2014) Full-length dystrophin reconstitution with adeno-associated viral vectors. Hum Gene Ther 25:552–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu QL, Yokota T, Takeda S, Garcia L, Muntoni F, Partridge T (2011) The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol Ther 19:9–15

    Article  CAS  PubMed  Google Scholar 

  • Madigan VJ, Asokan A (2016) Engineering AAV receptor footprints for gene therapy. Curr Opin Virol 18:89–96

    Article  CAS  PubMed  Google Scholar 

  • Maeder ML, Gersbach CA (2016) Genome editing technologies for gene and cell therapy. Mol Ther. doi:10.1038/mt.2016.10

    PubMed  PubMed Central  Google Scholar 

  • McClorey G, Wood MJ (2015) An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol 24:52–58

    Article  CAS  PubMed  Google Scholar 

  • McClorey G, Moulton HM, Iversen PL, Fletcher S, Wilton SD (2006) Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther 13:1373–1381

    Article  CAS  PubMed  Google Scholar 

  • McCullagh KJ, Perlingeiro RC (2015) Coaxing stem cells for skeletal muscle repair. Adv Drug Deliv Rev 84:198–207

    Article  CAS  PubMed  Google Scholar 

  • McDonald CM, Henricson EK, Abresch RT, Florence JM, Eagle M, Gappmaier E, Glanzman AM, Group PG-DS, Spiegel R, Barth J et al (2013) The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve 48:343–356

    Article  Google Scholar 

  • McDonald C, Henricson E, Abresch R, Han J, Nicorici A, Goude E, Elfring G, Reha A, Hirawat S, Miller L (2010a) The 6-Min walk test in duchenne muscular dystrophy: longitudinal observations. Neurology 74:A219–A219

    Google Scholar 

  • McDonald CM, Henricson EK, Han JJ, Abresch RT, Nicorici A, Elfring GL, Atkinson L, Reha A, Hirawat S, Miller LL (2010b) The 6-Minute Walk Test as a New Outcome Measure in Duchenne Muscular Dystrophy. Muscle Nerve 41:500–510

    Article  PubMed  Google Scholar 

  • Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, Kaye EM, Mercuri E, Eteplirsen Study G, Telethon Foundation DMDIN (2016) Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Annals of neurology 79:257–271

    Article  CAS  Google Scholar 

  • Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Besson S, Mcandrew PE, Rice R et al (1995) Myoblast Transfer in the Treatment of Duchennes Muscular-Dystrophy. New Engl J Med 333:832–838

    Article  CAS  PubMed  Google Scholar 

  • Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, Bowles D, Gray S, Li C, Galloway G et al (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 363:1429–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP, Alfano L, Gomez AM, Lewis S, Kota J et al (2013) Eteplirsen for the treatment of Duchenne muscular dystrophy. Annals of neurology 74:637–647

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  • Naldini L (2015) Gene therapy returns to centre stage. Nature 526:351–360

    Article  CAS  PubMed  Google Scholar 

  • Nallamilli BR, Ankala A, Hegde M. 2014. Molecular diagnosis of duchenne muscular dystrophy. Current protocols in human genetics/editorial board, Jonathan L Haines et al 83:9 25 21–29 25:29

  • Nelson CE, Gersbach CA (2016) Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng 7:637–662

    Article  CAS  PubMed  Google Scholar 

  • Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX et al (2015) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. doi:10.1126/science.aad5143

    Google Scholar 

  • Ohshima S, Shin JH, Yuasa K, Nishiyama A, Kira J, Okada T, Takeda S (2009) Transduction efficiency and immune response associated with the administration of AAV8 vector into dog skeletal muscle. Mol Ther 17:73–80

    Article  CAS  PubMed  Google Scholar 

  • Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, Qin X, Fedrigo O, Mouly V, Tremblay JP, Gersbach CA (2013) Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 21:1718–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA (2015a) Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6:6244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, Reddy TE, Gersbach CA (2015b) Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther J Am Soc Gene The 23:523–532

    Article  CAS  Google Scholar 

  • Palmieri B, Tremblay JP, Daniele L (2010) Past, present and future of myoblast transplantation in the treatment of Duchenne muscular dystrophy. Pediatr Transplant 14:813–819

    Article  PubMed  Google Scholar 

  • Pane M, Mazzone ES, Sivo S, Sormani MP, Messina S, D’Amico A, Carlesi A, Vita G, Fanelli L, Berardinelli A et al (2014) Long term natural history data in ambulant boys with Duchenne muscular dystrophy: 36-month changes. PLoS One 9:e108205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parker AE, Robb SA, Chambers J, Davidson AC, Evans K, O’Dowd J, Williams AJ, Howard RS (2005) Analysis of an adult Duchenne muscular dystrophy population. QJM Monthly J Assoc Physicians 98:729–736

    Article  CAS  Google Scholar 

  • Penaud-Budloo M, Le Guiner C, Nowrouzi A, Toromanoff A, Cherel Y, Chenuaud P, Schmidt M, von Kalle C, Rolling F, Moullier P et al (2008) Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol 82:7875–7885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popplewell L, Koo T, Leclerc X, Duclert A, Mamchaoui K, Gouble A, Mouly V, Voit T, Paques F, Cedrone F et al (2013) Gene correction of a duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in. Hum Gene Ther 24:692–701

    Article  CAS  PubMed  Google Scholar 

  • Quenneville SP, Chapdelaine P, Rousseau J, Beaulieu J, Caron NJ, Skuk D, Mills P, Olivares EC, Calos MP, Tremblay JP (2004) Nucleofection of muscle-derived stem cells and myoblasts with phiC31 integrase: stable expression of a full-length-dystrophin fusion gene by human myoblasts. Mol Ther J Am Soc Gene Ther 10:679–687

    Article  CAS  Google Scholar 

  • Ramos J, Chamberlain JS (2015) Gene therapy for duchenne muscular dystrophy. Expert Opinion Orphan Drugs 3:1255–1266

    Article  CAS  Google Scholar 

  • Ricotti V, Ridout DA, Scott E, Quinlivan R, Robb SA, Manzur AY, Muntoni F, NorthStar Clinical N (2013) Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry 84:698–705

    Article  PubMed  Google Scholar 

  • Romero NB, Braun S, Benveniste O, Leturcq F, Hogrel JY, Morris GE, Barois A, Eymard B, Payan C, Ortega V et al (2004) Phase I study of dystrophin Duchenne/Becker plasmid-based gene therapy in muscular dystrophy. Hum Gene Ther 15:1065–1076

    Article  CAS  PubMed  Google Scholar 

  • Sazani P, Weller DL, Shrewsbury SB (2010) Safety pharmacology and genotoxicity evaluation of AVI-4658. Int J Toxicol 29:143–156

    Article  CAS  PubMed  Google Scholar 

  • Sazani P, Ness KP, Weller DL, Poage D, Nelson K, Shrewsbury AS (2011a) Chemical and mechanistic toxicology evaluation of exon skipping phosphorodiamidate morpholino oligomers in mdx mice. Int J Toxicol 30:322–333

    Article  CAS  PubMed  Google Scholar 

  • Sazani P, Ness KP, Weller DL, Poage DW, Palyada K, Shrewsbury SB (2011b) Repeat-dose toxicology evaluation in cynomolgus monkeys of AVI-4658, a phosphorodiamidate morpholino oligomer (PMO) drug for the treatment of duchenne muscular dystrophy. Int J Toxicol 30:313–321

    Article  CAS  PubMed  Google Scholar 

  • Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LF et al (2011) In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29:1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JH, Pan X, Hakim CH, Yang HT, Yue Y, Zhang K, Terjung RL, Duan D (2013) Microdystrophin ameliorates muscular dystrophy in the canine model of duchenne muscular dystrophy. Mol Ther 21:750–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Paques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11:11–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    Article  CAS  PubMed  Google Scholar 

  • Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA et al (2015) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. doi:10.1126/science.aad5177

    PubMed  PubMed Central  Google Scholar 

  • Touznik A, Lee JJ, Yokota T (2014) New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Therapy 14:809–819

    Article  CAS  Google Scholar 

  • Tremblay JP, Malouin F, Roy R, Huard J, Bouchard JP, Satoh A, Richards CL (1993) Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 2:99–112

    CAS  PubMed  Google Scholar 

  • Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • van Westering TL, Betts CA, Wood MJ (2015) Current understanding of molecular pathology and treatment of cardiomyopathy in duchenne muscular dystrophy. Molecules 20:8823–8855

    Article  PubMed  CAS  Google Scholar 

  • Voit T, Topaloglu H, Straub V, Muntoni F, Deconinck N, Campion G, De Kimpe SJ, Eagle M, Guglieri M, Hood S et al (2014) Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol 13:987–996

    Article  CAS  PubMed  Google Scholar 

  • Vulin A, Barthelemy I, Goyenvalle A, Thibaud JL, Beley C, Griffith G, Benchaouir R, le Hir M, Unterfinger Y, Lorain S et al (2012) Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol Ther 20:2120–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner KR, Lechtzin N, Judge DP (2007) Current treatment of adult Duchenne muscular dystrophy. Biochim Biophys Acta 1772:229–237

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Li J, Xiao X (2000) Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 97:13714–13719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J, Chen C, Li J, Xiao X (2005) Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23:321–328

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Li J, Fu FH, Xiao X (2009) Systemic human minidystrophin gene transfer improves functions and life span of dystrophin and dystrophin/utrophin-deficient mice. J Orthop Res 27:421–426

    Article  PubMed  Google Scholar 

  • Watchko J, O’Day T, Wang B, Zhou LQ, Tang Y, Li J, Xiao X (2002) Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum Gene Ther 13:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Wein N, Vulin A, Falzarano MS, Szigyarto CA, Maiti B, Findlay A, Heller KN, Uhlen M, Bakthavachalu B, Messina S et al (2014) Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat Med 20:992–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S et al (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447:87–91

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Moulton HM, Iversen PL, Jiang J, Li J, Spurney CF, Sali A, Guerron AD, Nagaraju K, Doran T et al (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci USA 105:14814–14819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y, Zhu H, Ma J, Han R (2015) CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther. doi:10.1038/mt.2015.192

    PubMed Central  Google Scholar 

  • Yin H, Moulton HM, Seow Y, Boyd C, Boutilier J, Iverson P, Wood MJ (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17:3909–3918

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Lu QL, Partridge T, Kobayashi M, Nakamura A, Takeda S, Hoffman E (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65:667–676

    Article  PubMed  Google Scholar 

  • Yoshimura M, Sakamoto M, Ikemoto M, Mochizuki Y, Yuasa K, Miyagoe-Suzuki Y, Takeda S (2004) AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol Ther J Am Soc Gene Ther 10:821–828

    Article  CAS  Google Scholar 

  • Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, Karumbayaram S, Kumagai-Cresse C, Wang D, Zack JA et al (2016) A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell. doi:10.1016/j.stem.2016.01.021

    Google Scholar 

  • Yue YP, Li ZB, Harper SQ, Davisson RL, Chamberlain JS, Duan DS (2003) Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation 108:1626–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Ludtke JJ, Thioudellet C, Kleinpeter P, Antoniou M, Herweijer H, Braun S, Wolff JA (2004) Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of duchenne muscular dystrophy. Hum Gene Ther 15:770–782

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Mali P, Huang X, Dowey SN, Cheng L (2011) Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118:4599–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Muscular Dystrophy Association (MDA277360), a Duke-Coulter Translational Partnership Grant, a Duke/UNC-Chapel Hill CTSA Consortium Collaborative Translational Research Award, a Hartwell Foundation Individual Biomedical Research Award, a March of Dimes Foundation Basil O’Connor Starter Scholar Award, National Institutes of Health (NIH) grant R01AR069085, an NIH Director’s New Innovator Award (DP2-OD008586), and the Office of the Assistant Secretary of Defense for Health Affairs, through the Duchenne Muscular Dystrophy Research Program under Award No. W81XWH-15-1-0469. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the NIH or Department of Defense. J.R.H. is supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Gersbach.

Ethics declarations

Conflict of interest

CA.G. and J.R.H. have filed patent applications related to genome editing for Duchenne muscular dystrophy. C.A.G. is an advisor to Editas Medicine, a company engaged in development of therapeutic genome editing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson-Hamm, J.N., Gersbach, C.A. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum Genet 135, 1029–1040 (2016). https://doi.org/10.1007/s00439-016-1725-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-016-1725-z

Keywords

Navigation