Skip to main content

Advertisement

Log in

Genome-wide two-locus epistasis scans in prostate cancer using two European populations

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Approximately 40 single nucleotide polymorphisms (SNPs) that are associated with prostate cancer (PCa) risk have been identified through genome-wide association studies (GWAS). However, these GWAS-identified PCa risk-associated SNPs can explain only a small proportion of heritability (~13%) of PCa risk. Gene–gene interaction is speculated to be one of the major factors contributing to the so-called missing heritability. To evaluate the gene–gene interaction and PCa risk, we performed a two-stage genome-wide gene–gene interaction scan using a novel statistical approach named “Boolean Operation-based Screening and Testing”. In the first stage, we exhaustively evaluated all pairs of SNP–SNP interactions for ~500,000 SNPs in 1,176 PCa cases and 1,101 control subjects from the National Cancer Institute Cancer Genetic Markers of Susceptibility (CGEMS) study. No SNP–SNP interaction reached a genome-wide significant level of 4.4E−13. The second stage of the study involved evaluation of the top 1,325 pairs of SNP–SNP interactions (P interaction <1.0E−08) implicated in CGEMS in another GWAS population of 1,964 PCa cases from the Johns Hopkins Hospital (JHH) and 3,172 control subjects from the Illumina iControl database. Sixteen pairs of SNP–SNP interactions were significant in the JHH population at a P interaction cutoff of 0.01. However, none of the 16 pairs of SNP–SNP interactions were significant after adjusting for multiple tests. The current study represents one of the first attempts to explore the high-dimensional etiology of PCa on a genome-wide scale. Our results suggested a list of SNP–SNP interactions that can be followed in other replication studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agresti A (2002) Categorical data analysis. Wiley Series in Probability and Statistics, 2nd edn. Wiley, New York

  • Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, Sigurdsson A, Benediktsdottir KR, Cazier JB, Sainz J, Jakobsdottir M, Kostic J, Magnusdottir DN, Ghosh S, Agnarsson K, Birgisdottir B, Le Roux L, Olafsdottir A, Blondal T, Andresdottir M, Gretarsdottir OS, Bergthorsson JT, Gudbjartsson D, Gylfason A, Thorleifsson G, Manolescu A, Kristjansson K, Geirsson G, Isaksson H, Douglas J, Johansson JE, Balter K, Wiklund F, Montie JE, Yu X, Suarez BK, Ober C, Cooney KA, Gronberg H, Catalona WJ, Einarsson GV, Barkardottir RB, Gulcher JR, Kong A, Thorsteinsdottir U, Stefansson K (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38:652–658. doi:10.1038/ng1808

    Article  PubMed  CAS  Google Scholar 

  • Bateson W, Mendel G (1909) Mendel’s principles of heredity. Cambridge University Press, Cambridge

  • Bell JT, Timpson NJ, Rayner NW, Zeggini E, Frayling TM, Hattersley AT, Morris AP, McCarthy MI (2011) Genome-wide association scan allowing for epistasis in type 2 diabetes. Ann Hum Genet 75:10–19. doi:10.1111/j.1469-1809.2010.00629.x

    Article  PubMed  Google Scholar 

  • Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38:1289–1297. doi:10.1038/ng1901

    Article  PubMed  CAS  Google Scholar 

  • Cordell HJ (2009) Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet 10:392–404. doi:10.1038/nrg2579

    Article  PubMed  CAS  Google Scholar 

  • Culverhouse R, Suarez BK, Lin J, Reich T (2002) A perspective on epistasis: limits of models displaying no main effect. Am J Hum Genet 70:461–471. doi:10.1086/338759

    Article  PubMed  Google Scholar 

  • Duggan D, Zheng SL, Knowlton M, Benitez D, Dimitrov L, Wiklund F, Robbins C, Isaacs SD, Cheng Y, Li G, Sun J, Chang BL, Marovich L, Wiley KE, Balter K, Stattin P, Adami HO, Gielzak M, Yan G, Sauvageot J, Liu W, Kim JW, Bleecker ER, Meyers DA, Trock BJ, Partin AW, Walsh PC, Isaacs WB, Gronberg H, Xu J, Carpten JD (2007) Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 99:1836–1844. doi:10.1093/jnci/djm250

    Article  PubMed  CAS  Google Scholar 

  • Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J, Field HI, Southey MC, Severi G, Donovan JL, Hamdy FC, Dearnaley DP, Muir KR, Smith C, Bagnato M, Ardern-Jones AT, Hall AL, O’Brien LT, Gehr-Swain BN, Wilkinson RA, Cox A, Lewis S, Brown PM, Jhavar SG, Tymrakiewicz M, Lophatananon A, Bryant SL, Horwich A, Huddart RA, Khoo VS, Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Fisher C, Jamieson C, Cooper CS, English DR, Hopper JL, Neal DE, Easton DF (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40:316–321. doi:10.1038/ng.90

    Article  PubMed  CAS  Google Scholar 

  • Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G, Muir K, Hopper JL, Henderson BE, Haiman CA, Schleutker J, Hamdy FC, Neal DE, Donovan JL, Stanford JL, Ostrander EA, Ingles SA, John EM, Thibodeau SN, Schaid D, Park JY, Spurdle A, Clements J, Dickinson JL, Maier C, Vogel W, Dork T, Rebbeck TR, Cooney KA, Cannon-Albright L, Chappuis PO, Hutter P, Zeegers M, Kaneva R, Zhang HW, Lu YJ, Foulkes WD, English DR, Leongamornlert DA, Tymrakiewicz M, Morrison J, Ardern-Jones AT, Hall AL, O’Brien LT, Wilkinson RA, Saunders EJ, Page EC, Sawyer EJ, Edwards SM, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As N, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Cooper CS, Southey MC, Lophatananon A, Liu JF, Kolonel LN, Le Marchand L, Wahlfors T, Tammela TL, Auvinen A, Lewis SJ, Cox A, FitzGerald LM, Koopmeiners JS, Karyadi DM, Kwon EM, Stern MC, Corral R, Joshi AD, Shahabi A, McDonnell SK, Sellers TA, Pow-Sang J, Chambers S, Aitken J, Gardiner RA, Batra J, Kedda MA, Lose F, Polanowski A, Patterson B, Serth J, Meyer A, Luedeke M, Stefflova K, Ray AM, Lange EM, Farnham J, Khan H, Slavov C, Mitkova A, Cao G et al (2009) Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet 41:1116–1121. doi:10.1038/ng.450

    Article  PubMed  CAS  Google Scholar 

  • Ezzat S, Yu S, Asa SL (2003) Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5′ fibroblast growth factor receptor-4 promoter. Am J Pathol 163:1177–1184. doi:10.1016/S0002-9440(10)63477-3

    Article  PubMed  CAS  Google Scholar 

  • Ezzat S, Zhu X, Loeper S, Fischer S, Asa SL (2006) Tumor-derived Ikaros 6 acetylates the Bcl-XL promoter to up-regulate a survival signal in pituitary cells. Mol Endocrinol 20:2976–2986. doi:10.1210/me.2006-0265

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Sun J, Kim ST, Lu Y, Wang Z, Zhang Z, Gronberg H, Isaacs WB, Zheng SL, Xu J (2011) A genome-wide survey over the ChIP-on-chip identified androgen receptor-binding genomic regions identifies a novel prostate cancer susceptibility locus at 12q13.13. Cancer Epidemiol Biomarkers Prev 20:2396–2403. doi:10.1158/1055-9965.EPI-11-0523

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1918) The correlations between relatives on the supposition of Mendelian inheritance. Philos Trans Royal Soc Edinburgh 52:35

    Google Scholar 

  • Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, Sharpe A (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79:143–156

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A, Rafnar T, Bergthorsson JT, Agnarsson BA, Baker A, Sigurdsson A, Benediktsdottir KR, Jakobsdottir M, Xu J, Blondal T, Kostic J, Sun J, Ghosh S, Stacey SN, Mouy M, Saemundsdottir J, Backman VM, Kristjansson K, Tres A, Partin AW, Albers-Akkers MT, Godino-Ivan Marcos J, Walsh PC, Swinkels DW, Navarrete S, Isaacs SD, Aben KK, Graif T, Cashy J, Ruiz-Echarri M, Wiley KE, Suarez BK, Witjes JA, Frigge M, Ober C, Jonsson E, Einarsson GV, Mayordomo JI, Kiemeney LA, Isaacs WB, Catalona WJ, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631–637. doi:10.1038/ng1999

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D, Agnarsson BA, Sigurdsson A, Benediktsdottir KR, Blondal T, Jakobsdottir M, Stacey SN, Kostic J, Kristinsson KT, Birgisdottir B, Ghosh S, Magnusdottir DN, Thorlacius S, Thorleifsson G, Zheng SL, Sun J, Chang BL, Elmore JB, Breyer JP, McReynolds KM, Bradley KM, Yaspan BL, Wiklund F, Stattin P, Lindstrom S, Adami HO, McDonnell SK, Schaid DJ, Cunningham JM, Wang L, Cerhan JR, St Sauver JL, Isaacs SD, Wiley KE, Partin AW, Walsh PC, Polo S, Ruiz-Echarri M, Navarrete S, Fuertes F, Saez B, Godino J, Weijerman PC, Swinkels DW, Aben KK, Witjes JA, Suarez BK, Helfand BT, Frigge ML, Kristjansson K, Ober C, Jonsson E, Einarsson GV, Xu J, Gronberg H, Smith JR, Thibodeau SN, Isaacs WB, Catalona WJ, Mayordomo JI, Kiemeney LA, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40:281–283. doi:10.1038/ng.89

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson J, Sulem P, Gudbjartsson DF, Blondal T, Gylfason A, Agnarsson BA, Benediktsdottir KR, Magnusdottir DN, Orlygsdottir G, Jakobsdottir M, Stacey SN, Sigurdsson A, Wahlfors T, Tammela T, Breyer JP, McReynolds KM, Bradley KM, Saez B, Godino J, Navarrete S, Fuertes F, Murillo L, Polo E, Aben KK, van Oort IM, Suarez BK, Helfand BT, Kan D, Zanon C, Frigge ML, Kristjansson K, Gulcher JR, Einarsson GV, Jonsson E, Catalona WJ, Mayordomo JI, Kiemeney LA, Smith JR, Schleutker J, Barkardottir RB, Kong A, Thorsteinsdottir U, Rafnar T, Stefansson K (2009) Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet 41:1122–1126. doi:10.1038/ng.448

    Article  PubMed  CAS  Google Scholar 

  • Halldorsson JG, Flekkoy KM, Gudmundsson KR, Arnkelsson GB, Arnarson EO (2007) Urban–rural differences in pediatric traumatic head injuries: a prospective nationwide study. Neuropsychiatr Dis Treat 3:935–941

    PubMed  Google Scholar 

  • Hsu FC, Sun J, Wiklund F, Isaacs SD, Wiley KE, Purcell LD, Gao Z, Stattin P, Zhu Y, Kim ST, Zhang Z, Liu W, Chang BL, Walsh PC, Duggan D, Carpten JD, Isaacs WB, Gronberg H, Xu J, Zheng SL (2009) A novel prostate cancer susceptibility locus at 19q13. Cancer Res 69:2720–2723. doi:10.1158/0008-5472.CAN-08-3347

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Kato Y, Kunita A, Fujita N, Tsuruo T, Osawa M (2004) Functional sialylated O-glycan to platelet aggregation on Aggrus (T1alpha/Podoplanin) molecules expressed in Chinese hamster ovary cells. J Biol Chem 279:38838–38843. doi:10.1074/jbc.M407210200

    Article  PubMed  CAS  Google Scholar 

  • Kanner WA, Galgano MT, Atkins KA (2010) Podoplanin expression in basal and myoepithelial cells: utility and potential pitfalls. Appl Immunohistochem Mol Morphol 18:226–230. doi:10.1097/PAI.0b013e3181c65141

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Cheng Y, Hsu FC, Jin T, Kader AK, Zheng SL, Isaacs WB, Xu J, Sun J (2010) Prostate cancer risk-associated variants reported from genome-wide association studies: meta-analysis and their contribution to genetic Variation. Prostate 70:1729–1738. doi:10.1002/pros.21208

    Article  PubMed  Google Scholar 

  • Kote-Jarai Z, Olama AA, Giles GG, Severi G, Schleutker J, Weischer M, Campa D, Riboli E, Key T, Gronberg H, Hunter DJ, Kraft P, Thun MJ, Ingles S, Chanock S, Albanes D, Hayes RB, Neal DE, Hamdy FC, Donovan JL, Pharoah P, Schumacher F, Henderson BE, Stanford JL, Ostrander EA, Sorensen KD, Dork T, Andriole G, Dickinson JL, Cybulski C, Lubinski J, Spurdle A, Clements JA, Chambers S, Aitken J, Gardiner RA, Thibodeau SN, Schaid D, John EM, Maier C, Vogel W, Cooney KA, Park JY, Cannon-Albright L, Brenner H, Habuchi T, Zhang HW, Lu YJ, Kaneva R, Muir K, Benlloch S, Leongamornlert DA, Saunders EJ, Tymrakiewicz M, Mahmud N, Guy M, O’Brien LT, Wilkinson RA, Hall AL, Sawyer EJ, Dadaev T, Morrison J, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As N, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Cooper CS, Lophatonanon A, Southey MC, Hopper JL, English DR, Wahlfors T, Tammela TL, Klarskov P, Nordestgaard BG, Roder MA, Tybjaerg-Hansen A, Bojesen SE, Travis R, Canzian F, Kaaks R, Wiklund F, Aly M, Lindstrom S, Diver WR, Gapstur S, Stern MC, Corral R, Virtamo J, Cox A, Haiman CA, Le Marchand L, Fitzgerald L, Kolb S et al (2011) Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat Genet 43:785–791. doi:10.1038/ng.882

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85. doi:10.1056/NEJM200007133430201

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Runesha H, Dvorkin D, Garbe J, Da Y (2009) Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies. BMC Bioinformatics 9

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. doi:10.1038/nature08494

    Article  PubMed  CAS  Google Scholar 

  • Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 37:413–417. doi:10.1038/ng1537

    Article  PubMed  CAS  Google Scholar 

  • Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913. doi:10.1038/ng2088

    Article  PubMed  CAS  Google Scholar 

  • Martin-Villar E, Scholl FG, Gamallo C, Yurrita MM, Munoz-Guerra M, Cruces J, Quintanilla M (2005) Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 113:899–910. doi:10.1002/ijc.20656

    Article  PubMed  CAS  Google Scholar 

  • Mishima K, Kato Y, Kaneko MK, Nakazawa Y, Kunita A, Fujita N, Tsuruo T, Nishikawa R, Hirose T, Matsutani M (2006) Podoplanin expression in primary central nervous system germ cell tumors: a useful histological marker for the diagnosis of germinoma. Acta Neuropathol 111:563–568. doi:10.1007/s00401-006-0033-4

    Article  PubMed  CAS  Google Scholar 

  • Moore JW, B (2007) Tuning reliefF for genome-wide genetic analysis. Lect Notes Comput Sci 4447:10

  • Navarro A, Perez RE, Rezaiekhaligh MH, Mabry SM, Ekekezie II (2011) Polarized migration of lymphatic endothelial cells is critically dependent on podoplanin regulation of Cdc42. Am J Physiol Lung Cell Mol Physiol 300:L32–L42. doi:10.1152/ajplung.00171.2010

    Article  PubMed  CAS  Google Scholar 

  • Phillips PC (2008) Epistasis: the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867. doi:10.1038/nrg2452

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909. doi:10.1038/ng1847

    Article  PubMed  CAS  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795

    Article  PubMed  CAS  Google Scholar 

  • Rahadiani N, Ikeda J, Makino T, Tian T, Qiu Y, Mamat S, Wang Y, Doki Y, Aozasa K, Morii E (2010) Tumorigenic role of podoplanin in esophageal squamous-cell carcinoma. Ann Surg Oncol 17:1311–1323. doi:10.1245/s10434-009-0895-5

    Article  PubMed  Google Scholar 

  • Raica M, Cimpean AM, Ribatti D (2008) The role of podoplanin in tumor progression and metastasis. Anticancer Res 28:2997–3006

    PubMed  Google Scholar 

  • Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147. doi:10.1086/321276

    Article  PubMed  CAS  Google Scholar 

  • Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Detmar M (2003) T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22:3546–3556. doi:10.1093/emboj/cdg342

    Article  PubMed  CAS  Google Scholar 

  • Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M (2005) Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 166:913–921. doi:10.1016/S0002-9440(10)62311-5

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DF, Konig IR, Ziegler A (2010) On safari to random jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics 26:1752–1758. doi:10.1093/bioinformatics/btq257

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Heerema N, Crotty L, Wu X, Navara C, Vassilev A, Sensel M, Reaman GH, Uckun FM (1999) Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 96:680–685

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Purcell L, Gao Z, Isaacs SD, Wiley KE, Hsu FC, Liu W, Duggan D, Carpten JD, Gronberg H, Xu J, Chang BL, Partin AW, Walsh PC, Isaacs WB, Zheng SL (2008) Association between sequence variants at 17q12 and 17q24.3 and prostate cancer risk in European and African Americans. Prostate 68:691–697. doi:10.1002/pros.20754

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Zheng SL, Wiklund F, Isaacs SD, Li G, Wiley KE, Kim ST, Zhu Y, Zhang Z, Hsu FC, Turner AR, Stattin P, Liu W, Kim JW, Duggan D, Carpten J, Isaacs W, Gronberg H, Xu J, Chang BL (2009) Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res 69:10–15. doi:10.1158/0008-5472.CAN-08-3464

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, Crenshaw A, Cancel-Tassin G, Staats BJ, Wang Z, Gonzalez-Bosquet J, Fang J, Deng X, Berndt SI, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cussenot O, Valeri A, Andriole GL, Crawford ED, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover R, Hayes RB, Hunter DJ, Chanock SJ (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40:310–315. doi:10.1038/ng.91

    Article  PubMed  CAS  Google Scholar 

  • Wan X, Yang C, Yang Q, Xue H, Fan X, Tang NL, Yu W (2010) BOOST: a fast approach to detecting gene–gene interactions in genome-wide case–control studies. Am J Hum Genet 87:325–340. doi:10.1016/j.ajhg.2010.07.021

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, Chen Z, Beroukhim R, Wang H, Lupien M, Wu T, Regan MM, Meyer CA, Carroll JS, Manrai AK, Janne OA, Balk SP, Mehra R, Han B, Chinnaiyan AM, Rubin MA, True L, Fiorentino M, Fiore C, Loda M, Kantoff PW, Liu XS, Brown M (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256. doi:10.1016/j.cell.2009.04.056

    Article  PubMed  CAS  Google Scholar 

  • Wicki A, Christofori G (2007) The potential role of podoplanin in tumour invasion. Br J Cancer 96:1–5. doi:10.1038/sj.bjc.6603518

    Article  PubMed  CAS  Google Scholar 

  • Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006) Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9:261–272. doi:10.1016/j.ccr.2006.03.010

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Zheng SL, Isaacs SD, Wiley KE, Wiklund F, Sun J, Kader AK, Li G, Purcell LD, Kim ST, Hsu FC, Stattin P, Hugosson J, Adolfsson J, Walsh PC, Trent JM, Duggan D, Carpten J, Gronberg H, Isaacs WB (2010) Inherited genetic variant predisposes to aggressive but not indolent prostate cancer. Proc Natl Acad Sci USA 107:2136–2140. doi:10.1073/pnas.0914061107

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Luo Y, Wei J (2010) Integrative genomic analyses on Ikaros and its expression related to solid cancer prognosis. Oncol Rep 24:571–577

    PubMed  CAS  Google Scholar 

  • Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, Minichiello MJ, Fearnhead P, Yu K, Chatterjee N, Wang Z, Welch R, Staats BJ, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Gelmann EP, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover R, Hunter DJ, Chanock SJ, Thomas G (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39:645–649. doi:10.1038/ng2022

    Article  PubMed  CAS  Google Scholar 

  • Yeager M, Chatterjee N, Ciampa J, Jacobs KB, Gonzalez-Bosquet J, Hayes RB, Kraft P, Wacholder S, Orr N, Berndt S, Yu K, Hutchinson A, Wang Z, Amundadottir L, Feigelson HS, Thun MJ, Diver WR, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Crawford ED, Haiman CA, Henderson B, Kolonel L, Le Marchand L, Siddiq A, Riboli E, Key TJ, Kaaks R, Isaacs W, Isaacs S, Wiley KE, Gronberg H, Wiklund F, Stattin P, Xu J, Zheng SL, Sun J, Vatten LJ, Hveem K, Kumle M, Tucker M, Gerhard DS, Hoover RN, Fraumeni JF Jr, Hunter DJ, Thomas G, Chanock SJ (2009) Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat Genet 41:1055–1057. doi:10.1038/ng.444

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Liu JS (2007) Bayesian inference of epistatic interactions in case–control studies. Nat Genet 39:1167–1173. doi:10.1038/ng2110

    Article  PubMed  CAS  Google Scholar 

  • Zheng SL, Stevens VL, Wiklund F, Isaacs SD, Sun J, Smith S, Pruett K, Wiley KE, Kim ST, Zhu Y, Zhang Z, Hsu FC, Turner AR, Johansson JE, Liu W, Kim JW, Chang BL, Duggan D, Carpten J, Rodriguez C, Isaacs W, Gronberg H, Xu J (2009) Two independent prostate cancer risk-associated loci at 11q13. Cancer Epidemiol Biomarkers Prev 18:1815–1820. doi:10.1158/1055-9965.EPI-08-0983

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all of the study subjects who participated in the JHH study and the urologists who provided their patients to the JHH study. We acknowledge the contribution of multiple physicians and researchers in designing and recruiting study subjects. We also acknowledge the National Cancer Institute Cancer Genetic Markers of Susceptibility Initiative (CGEMS) for making the data publicly available. We also want to thank Dr. Can Yang for kindly responding to all our questions related to BOOST software. This work was supported by a DOD grant to J.S (W81XWH-09-1-0488), an intramural funding from the Van Andel Research Institute to J.X, and a R01 grant from the National Cancer Institute (CA129684 J.X).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jielin Sun.

Additional information

S. Tao and J. Feng contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 615 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, S., Feng, J., Webster, T. et al. Genome-wide two-locus epistasis scans in prostate cancer using two European populations. Hum Genet 131, 1225–1234 (2012). https://doi.org/10.1007/s00439-012-1148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1148-4

Keywords

Navigation