Skip to main content
Log in

Genetic analysis of diabetic nephropathy on chromosome 18 in African Americans: linkage analysis and dense SNP mapping

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Genetic studies in Turkish, Native American, European American, and African American (AA) families have linked chromosome 18q21.1–23 to susceptibility for diabetes-associated nephropathy. In this study, we have carried out fine linkage mapping in the 18q region previously linked to diabetic nephropathy in AAs by genotyping both microsatellite and single nucleotide polymorphisms (SNPs) for linkage analysis in an expanded set of 223 AA families multiplexed for type 2 diabetes associated ESRD (T2DM-ESRD). Several approaches were used to evaluate evidence of linkage with the strongest evidence for linkage in ordered subset analysis with an earlier age of T2DM diagnosis compared to the remaining pedigrees (LOD 3.9 at 90.1 cM, ∆P = 0.0161, NPL P value = 0.00002). Overall, the maximum LODs and LOD-1 intervals vary in magnitude and location depending upon analysis. The linkage mapping was followed up by performing a dense SNP map, genotyping 2,814 SNPs in the refined LOD-1 region in 1,029 AA T2DM-ESRD cases and 1,027 AA controls. Of the top 25 most associated SNPs, 10 resided within genic regions. Two candidate genes stood out: NEDD4L and SERPINB7. SNP rs512099, located in intron 1 of NEDD4L, was associated under a dominant model of inheritance [P value = 0.0006; Odds ratio (95% Confidence Interval) OR (95% CI) = 0.70 (0.57–0.86)]. SNP rs1720843, located in intron 2 of SERPINB7, was associated under a recessive model of inheritance [P value = 0.0017; OR (95% CI) = 0.65 (0.50–0.85)]. Collectively, these results suggest that multiple genes in this region may influence diabetic nephropathy susceptibility in AAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

cM:

centiMorgan

ESRD:

End-stage renal disease

LOD:

Log of the odds

DN:

Diabetic nephropathy

OSA:

Ordered subsets analysis

NPL:

Nonparametric linkage

References

  • Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    Article  CAS  PubMed  Google Scholar 

  • Araki N, Umemura M, Miyagi Y, Yabana M, Miki Y, Tamura K, Uchino K, Aoki R, Goshima Y, Umemura S, Ishigami T (2008) Expression, transcription, and possible antagonistic interaction of the human Nedd4L gene variant: implications for essential hypertension. Hypertension 51:773–777

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bowden DW (2003) Genetics of kidney disease. Kidney Int Suppl: S8–12

  • Bowden DW, Colicigno CJ, Langefeld CD, Sale MM, Williams A, Anderson PJ, Rich SS, Freedman BI (2004) A genome scan for diabetic nephropathy in African Americans. Kidney Int 66:1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P, Kelley J, Little DP, Strausberg R, Koester H, Cantor CR, Braun A (2001) High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci USA 98:581–584

    Article  CAS  PubMed  Google Scholar 

  • Center for Disease Control and Prevention (2008) Age-Adjusted Percentage of Civilian, Noninstitutionalized Population with Diagnosed Diabetes, by Race and Sex, United States, 1986-2006. Available via CDC. http://www.cdc.gov/diabetes/statistics/prev/national/figraceethsex.htm. Accessed 21 May 2009

  • Davis CC, Brown WM, Lange EM, Rich SS, Langefeld CD (2001) Nonparametric linkage regression. II: identification of influential pedigrees in tests for linkage. Genet Epidemiol 21(Suppl 1):S123–S129

    PubMed  Google Scholar 

  • Dunn DM, Ishigami T, Pankow J, von Niederhausern A, Alder J, Hunt SC, Leppert MF, Lalouel JM, Weiss RB (2002) Common variant of human NEDD4L activates a cryptic splice site to form a frameshifted transcript. J Hum Genet 47:665–676

    Article  CAS  PubMed  Google Scholar 

  • Ewens KG, George RA, Sharma K, Ziyadeh FN, Spielman RS (2005) Assessment of 115 candidate genes for diabetic nephropathy by transmission/disequilibrium test. Diabetes 54:3305–3318

    Article  CAS  PubMed  Google Scholar 

  • Freedman BI, Tuttle AB, Spray BJ (1995) Familial predisposition to nephropathy in African–Americans with non-insulin-dependent diabetes mellitus. Am J Kidney Dis 25:710–713

    Article  CAS  PubMed  Google Scholar 

  • Freedman BI, Yu H, Spray BJ, Rich SS, Rothschild CB, Bowden DW (1997) Genetic linkage analysis of growth factor loci and end-stage renal disease in African Americans. Kidney Int 51:819–825

    Article  CAS  PubMed  Google Scholar 

  • Freedman BI, Yu H, Anderson PJ, Roh BH, Rich SS, Bowden DW (2000) Genetic analysis of nitric oxide and endothelin in end-stage renal disease. Nephrol Dial Transplant 15:1794–1800

    Article  CAS  PubMed  Google Scholar 

  • Freedman BI, Rich SS, Yu H, Roh BH, Bowden DW (2002) Linkage heterogeneity of end-stage renal disease on human chromosome 10. Kidney Int 62:770–774

    Article  CAS  PubMed  Google Scholar 

  • Freedman BI, Hicks PJ, Sale MM, Pierson ED, Langefeld CD, Rich SS, Xu J, McDonough C, Janssen B, Yard B, van der Woude FJ, Bowden DW (2007) A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans. Nephrol Dial Transplant 22:1131–1135

    Article  CAS  PubMed  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  CAS  PubMed  Google Scholar 

  • Halama N, Yard-Breedijk A, Vardarli I, Akkoyun I, Yard B, Janssen B, van der Woude FJ (2003) The Kruppel-like zinc-finger gene ZNF236 is alternatively spliced and excluded as susceptibility gene for diabetic nephropathy. Genomics 82:406–411

    Article  CAS  PubMed  Google Scholar 

  • Harley JB, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsao BP, Vyse TJ, Langefeld CD, Nath SK, Guthridge JM, Cobb BL, Mirel DB, Marion MC, Williams AH, Divers J, Wang W, Frank SG, Namjou B, Gabriel SB, Lee AT, Gregersen PK, Behrens TW, Taylor KE, Fernando M, Zidovetzki R, Gaffney PM, Edberg JC, Rioux JD, Ojwang JO, James JA, Merrill JT, Gilkeson GS, Seldin MF, Yin H, Baechler EC, Li QZ, Wakeland EK, Bruner GR, Kaufman KM, Kelly JA (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40:204–210

    Article  CAS  PubMed  Google Scholar 

  • Hauser ER, Watanabe RM, Duren WL, Bass MP, Langefeld CD, Boehnke M (2004) Ordered subset analysis in genetic linkage mapping of complex traits. Genet Epidemiol 27:53–63

    Article  PubMed  Google Scholar 

  • Inagi R, Yamamoto Y, Nangaku M, Usuda N, Okamato H, Kurokawa K, de Strihou C, Yamamoto H, Miyata T (2006) A severe diabetic nephropathy model with early development of nodule-like lesions induced by megsin overexpression in RAGE/iNOS transgenic mice. Diabetes 55:356–366

    Article  CAS  PubMed  Google Scholar 

  • Iyengar SK, Abboud HE, Goddard KA, Saad MF, Adler SG, Arar NH, Bowden DW, Duggirala R, Elston RC, Hanson RL, Ipp E, Kao WH, Kimmel PL, Klag MJ, Knowler WC, Meoni LA, Nelson RG, Nicholas SB, Pahl MV, Parekh RS, Quade SR, Rich SS, Rotter JI, Scavini M, Schelling JR, Sedor JR, Sehgal AR, Shah VO, Smith MW, Taylor KD, Winkler CA, Zager PG, Freedman BI (2007) Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND). Diabetes 56:1577–1585

    Article  CAS  PubMed  Google Scholar 

  • Janssen B, Hohenadel D, Brinkkoetter P, Peters V, Rind N, Fischer C, Rychlik I, Cerna M, Romzova M, de Heer E, Baelde H, Bakker SJ, Zirie M, Rondeau E, Mathieson P, Saleem MA, Meyer J, Köppel H, Sauerhoefer S, Bartram CR, Nawroth P, Hammes HP, Yard BA, Zschocke J, van der Woude FJ (2005) Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54:2320–2327

    Article  CAS  PubMed  Google Scholar 

  • Langefeld CD, Boehnke M (1999) Multiple trait locus nonparametric linkage regression. Am J Hum Genet 65:A1140

    Google Scholar 

  • Langefeld CD, Davis CC, Brown WM (2001) Nonparametric linkage regression. I: combined Caucasian CSGA and German genome scans for asthma. Genet Epidemiol 21(Suppl 1):S136–S141

    PubMed  Google Scholar 

  • Li YJ, Du Y, Li CX, Guo H, Leung JC, Lam MF, Yang N, Huang F, Chen Y, Fang JQ, Maxwell PH, Lai KN, Wang Y (2004) Family-based association study showing that immunoglobulin A nephropathy is associated with the polymorphisms 2093C and 2180T in the 3′ untranslated region of the Megsin gene. J Am Soc Nephrol 15:1739–1743

    Article  CAS  PubMed  Google Scholar 

  • Lim CS, Kim SM, Oh YK, Joo KW, Kim YS, Han JS, Kim S (2008) Megsin 2093T–2180C haplotype at the 3′ untranslated region is associated with poor renal survival in Korean IgA nephropathy patients. Clin Nephrol 70:101–109

    CAS  PubMed  Google Scholar 

  • Manunta P, Lavery G, Lanzani C, Braund PS, Simonini M, Bodycote C, Zagato L, Delli Carpini S, Tantardini C, Brioni E, Bianchi G, Samani NJ (2008) Physiological interaction between alpha-adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation. Hypertension 52:366–372

    Article  CAS  PubMed  Google Scholar 

  • Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C, Hyland FC, Kennedy GC, Kong X, Murray SS, Ziegle JS, Stewart WC, Buyske S (2007) A second-generation combined linkage physical map of the human genome. Genome Res 17:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • McDonough CW, Hicks PJ, Lu L, Langefeld CD, Freedman BI, Bowden DW (2009) The influence of carnosinase gene polymorphisms on diabetic nephropathy risk in African-Americans. Hum Genet (Epub Apr 17)

  • McPeek MS, Sun L (2000) Statistical tests for detection of misspecified relationships by use of genome-screen data. Am J Hum Genet 66:1076–1094

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Nangaku M, Suzuki D, Inagi R, Uragami K, Sakai H, Okubo K, Kurokawa K (1998) A mesangium-predominant gene, megsin, is a new serpin upregulated in IgA nephropathy. J Clin Invest 102:828–836

    Article  CAS  PubMed  Google Scholar 

  • O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266

    Article  PubMed  Google Scholar 

  • Ohtomo S, Nangaku M, Izuhara Y, Yamada N, Dan T, Mori T, Ito S, de Strihou C, Miyata T (2008) The role of megsin, a serine protease inhibitor, in diabetic mesangial matrix accumulation. Kidney Int 74:768–774

    Article  CAS  PubMed  Google Scholar 

  • Russo CJ, Melista E, Cui J, DeStefano AL, Bakris GL, Manolis AJ, Gavras H, Baldwin CT (2005) Association of NEDD4L ubiquitin ligase with essential hypertension. Hypertension 46:488–491

    Article  CAS  PubMed  Google Scholar 

  • Scott FL, Eyre HJ, Lioumi M, Ragoussis J, Irving JA, Sutherland GA, Bird PI (1999) Human ovalbumin serpin evolution: phylogenic analysis, gene organization, and identification of new PI8-related genes suggest that two interchromosomal and several intrachromosomal duplications generated the gene clusters at 18q21–q23 and 6p25. Genomics 62:490–499

    Article  CAS  PubMed  Google Scholar 

  • Sile S, Velez DR, Gillani NB, Alexander CA, George AL Jr, Williams SM (2008) Haplotype diversity in four genes (CLCNKA, CLCNKB, BSND, NEDD4L) involved in renal salt reabsorption. Hum Hered 65:33–46

    Article  CAS  PubMed  Google Scholar 

  • Spray BJ, Atassi NG, Tuttle AB, Freedman BE (1995) Familial risk, age at onset, and cause of end-stage renal disease in white Americans. J Am Soc Nephrol 5:1806–1810

    CAS  PubMed  Google Scholar 

  • Tang H, Peng J, Wang P, Risch NJ (2005) Estimation of individual admixture: analytical and study design considerations. Genet Epidemiol 28:289–301

    Article  PubMed  Google Scholar 

  • Umemura M, Ishigami T, Tamura K, Sakai M, Miyagi Y, Nagahama K, Aoki I, Uchino K, Rohrwasser A, Lalouel JM, Umemura S (2006) Transcriptional diversity and expression of NEDD4L gene in distal nephron. Biochem Biophys Res Commun 339:1129–1137

    Article  CAS  PubMed  Google Scholar 

  • US Renal Data System (2008) USRDS 2008 annual data report: atlas of end-stage renal disease in the United States. National Institutes of Health. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda

    Google Scholar 

  • Vardarli I, Baier LJ, Hanson RL, Akkoyun I, Fischer C, Rohmeiss P, Basci A, Bartram CR, Van Der Woude FJ, Janssen B (2002) Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3–23. Kidney Int 62:2176–2183

    Article  CAS  PubMed  Google Scholar 

  • Wen H, Lin R, Jiao Y, Wang F, Wang S, Lu D, Qian J, Jin L, Wang X (2008) Two polymorphisms in NEDD4L gene and essential hypertension in Chinese Hans - a population-based case-control study. Clin Exp Hypertens 30:87–94

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Li Y, Du Y, Yang N, Li C, Leung JC, Lam MF, Huang W, Chen S, Maxwell PH, Lai KN, Wang Y (2006) Association of MEGSIN 2093C–2180T haplotype at the 3’ untranslated region with disease severity and progression of IgA nephropathy. Nephrol Dial Transplant 21:1570–1574

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Bowden DW, Spray BJ, Rich SS, Freedman BI (1996) Linkage analysis between loci in the renin-angiotensin axis and end-stage renal disease in African Americans. J Am Soc Nephrol 7:2559–2564

    CAS  PubMed  Google Scholar 

  • Yu H, Bowden DW, Spray BJ, Rich SS, Freedman BI (1998) Identification of human plasma kallikrein gene polymorphisms and evaluation of their role in end-stage renal disease. Hypertension 31:906–911

    CAS  PubMed  Google Scholar 

  • Yu H, Anderson PJ, Freedman BI, Rich SS, Bowden DW (2000) Genomic structure of the human plasma prekallikrein gene, identification of allelic variants, and analysis in end-stage renal disease. Genomics 69:225–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank the patients, their relatives, and staff of the Southeastern Kidney Council, Inc./ESRD Network 6 for their participation. This work was supported by NIH grants RO1 DK066358 (DWB), R01 DK053591 (DWB), R01 HL56266 (BIF), R01 KD070941 (BIF) and in part by the General Clinical Research Center of the Wake Forest University School of Medicine grant M01 RR07122. Genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University; contract number N01-HG-65403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald W. Bowden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 1788 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonough, C.W., Bostrom, M.A., Lu, L. et al. Genetic analysis of diabetic nephropathy on chromosome 18 in African Americans: linkage analysis and dense SNP mapping. Hum Genet 126, 805–817 (2009). https://doi.org/10.1007/s00439-009-0732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0732-8

Keywords

Navigation