Skip to main content
Log in

Organelle DNA accumulation in the recently evolved papaya sex chromosomes

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Sex chromosomes are a pair of specialized chromosomes containing a sex determination region that is suppressed for recombination. Without recombination, Y chromosomes are thought to accumulate repetitive DNA sequences which contribute to their degeneration. A pair of primitive sex chromosomes controls sex type in papaya with male and hermaphrodite determined by the slightly different male-specific region of the Y (MSY) and hermaphrodite-specific region of Yh (HSY) chromosomes, respectively. Here, we show that the papaya HSY and MSY in the absence of recombination have accumulated nearly 12 times the amount of chloroplast-derived DNA than the corresponding region of the X chromosome and 4 times the papaya genome-wide average. Furthermore, a chloroplast genome fragment containing the rsp15 gene has been amplified 23 times in the HSY, evidence of retrotransposon-mediated duplication. Surprisingly, mitochondria-derived sequences are less abundant in the X and HSY compared to the whole genome. Shared organelle integrations are sparse between X and HSY, with only 11 % of chloroplast and 12 % of mitochondria fragments conserved, respectively, suggesting that the accelerated accumulation of organelle DNA occurred after the HSY was suppressed for recombination. Most of the organelle-derived sequences have divergence times of <7 MYA, reinforcing this notion. The accumulated chloroplast DNA is evidence of the slow degeneration of the HSY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bachtrog D (2003) Adaptation shapes patterns of genome evolution on sexual and asexual chromosomes in Drosophila. Nat Genet 34:215–219

    Article  PubMed  CAS  Google Scholar 

  • Bachtrog D, Charlesworth B (2002) Reduced adaptation of a non-recombining neo-Y chromosome. Nature 416:323–326

    Article  PubMed  CAS  Google Scholar 

  • Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102

    Article  PubMed  Google Scholar 

  • Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4(3):216–224

    Article  PubMed  CAS  Google Scholar 

  • Erlandsson R, Wilson JF, Paabo S (2000) Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol Biol Evol 17:804–812

    Article  PubMed  CAS  Google Scholar 

  • Grant SA, Houben A, Vyskot B, Siroky J, Pan WH, Macas J, Saedler H (1994) Genetics of sex determination in flowering plants. Dev Genet 15:214–230

    Article  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76

    Article  PubMed  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kejnovsky E, Kubat Z, Hobza R, Lengerova M, Sato S, Tabata S, Fukui K, Matsunaga S, Vyskot B (2006) Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica 128:167–175

    Article  PubMed  CAS  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17(10):1483–1498

    Article  PubMed  CAS  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2005) Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet 21:655–663

    Article  PubMed  CAS  Google Scholar 

  • Li WH (1997) Molecular evolution. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Lin X, Kaul S, Rounsley S et al (1999) Sequence analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    Article  PubMed  CAS  Google Scholar 

  • Matsuo M, Ito Y, Yamauchi R, Obokata J (2005) The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast–nuclear DNA flux. Plant Cell 17:665–675

    Article  PubMed  CAS  Google Scholar 

  • Mourier T, Hansen AJ, Willerslev E, Arctander P (2001) The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18:1833–1837

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9

    PubMed  CAS  Google Scholar 

  • Na JK, Wang J, Murray JE, Gschwend AR, Zhang W, Yu Q, Navajas-Perez R, Feltus FA, Chen C, Kubat Z, Moore PH, Jiang J, Paterson AH, Ming R (2012) Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics 13(1):176

    Article  PubMed  CAS  Google Scholar 

  • Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Sone T, Fujisawa M, Nakayama S, Takenaka M et al (2001) The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci USA 98:9454–9459

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM et al (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  PubMed  CAS  Google Scholar 

  • Ricchetti M, Fairhead C, Dujon B (1999) Mitochondrial DNA repairs double strand breaks in yeast chromosomes. Nature 402:96–100

    Article  PubMed  CAS  Google Scholar 

  • Ricchetti M, Tekaia F, Dujon B (2004) Continued colonization of the human genome by mitochondrial DNA. PLoS Biol 2:1313–1324

    Article  CAS  Google Scholar 

  • Rice Chromosome 10 Sequencing Consortium (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–1569

    Article  Google Scholar 

  • Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecous plant Cannabis sativa. Plant Mol Biol 44:723–732

    Article  PubMed  CAS  Google Scholar 

  • Steinemann M, Steinemann S (1992) Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc Natl Acad Sci USA 89:7591–7595

    Article  PubMed  CAS  Google Scholar 

  • Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci USA 98:5099–5103

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, HuangY Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Na JK, Yu Q et al (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Nat Ac Sci USA 109:13710–13715

    Article  CAS  Google Scholar 

  • Weingartner LA, Moore RC (2012) Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex-chromosome systems. Mol Biol Evol. doi:10.1093/molbev/mss196

    PubMed  Google Scholar 

  • Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Adv Genet 9:217–281

    Article  PubMed  CAS  Google Scholar 

  • Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S et al (2007) Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci USA 104:6472–6477

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Vision TJ, Gaut BS (2002) Patterns of nucleotide substitution among simultaneously duplicated gene pairs in Arabidopsis thaliana. Mol Biol Evol 19:1464–1473

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation (NSF) Plant Genome Research Program to RM (Award Nos. DBI0553417; DBI-0922545).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming.

Additional information

Communicated by D. Tian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

VanBuren, R., Ming, R. Organelle DNA accumulation in the recently evolved papaya sex chromosomes. Mol Genet Genomics 288, 277–284 (2013). https://doi.org/10.1007/s00438-013-0747-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0747-7

Keywords

Navigation