Skip to main content
Log in

Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

It is generally thought that cell growth and metabolism regulate cell division and not vice versa. Here, we examined Saccharomyces cerevisiae cells growing under conditions of continuous culture in a chemostat. We found that loss of G1 cyclins, or inactivation of the cyclin-dependent kinase Cdc28p, reduced the activity of glutamate synthase (Glt1p), a key enzyme in nitrogen assimilation. We also present evidence indicating that the G1 cyclin-dependent control of Glt1p may involve Jem1p, a DnaJ-type chaperone. Our results suggest that completion of START may be linked to nitrogen metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2
Fig. 3A–C
Fig. 4A–E
Fig. 5.

Similar content being viewed by others

References

  • Anderson SL, Minard KI, McAlister-Henn L (2000) Allosteric inhibition of NAD+-specific isocitrate dehydrogenase by a mitochondrial mRNA. Biochemistry 39:5623–5629

    Article  CAS  PubMed  Google Scholar 

  • Baganz F, Hayes A, Marren D, Gardner DC, Oliver SG (1997) Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast 13:1563–1573

    Article  CAS  PubMed  Google Scholar 

  • Baganz F, Hayes A, Farquhar R, Butler PR, Gardner DC, Oliver SG (1998) Quantitative analysis of yeast gene function using competition experiments in continuous culture. Yeast 14:1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Baroni MD, Monti P, Alberghina L (1994) Repression of growth-regulated G1 cyclin expression by cyclic AMP in budding yeast. Nature 371:339–342

    Article  CAS  PubMed  Google Scholar 

  • Benton BK, Tinkelenberg AH, Jean D, Plump SD, Cross FR (1993) Genetic analysis of Cln/Cdc28 regulation of cell morphogenesis in budding yeast. EMBO J 12:5267–5275

    CAS  PubMed  Google Scholar 

  • Brizzio V, Khalfan W, Huddler D, Beh CT, Andersen SSL, Latterich M, Rose MD (1999) Genetic Interactions between KAR7/SEC71, KAR8/JEM1 , KAR5 , and KAR2 during nuclear fusion in Saccharomyces cerevisiae. Mol Biol Cell 10:609–626

    CAS  PubMed  Google Scholar 

  • Cockcroft CE, den Boer BG, Healy JM, Murray JA (2000) Cyclin D control of growth rate in plants. Nature 405:575–579

    CAS  PubMed  Google Scholar 

  • Cogoni C, Valenzuela L, Gonzalez-Halphen D, Olivera H, Macino G, Ballario P, Gonzalez A (1995) Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plant-like high-molecular-weight polypeptide. J Bacteriol 177:792–798

    CAS  PubMed  Google Scholar 

  • Creanor J, Mitchison J (1979) Reduction of perturbations in leucine incorporation in synchronous cultures of Schizosaccharomyces pombe made by elutriation. J Gen Microbiol 112:385–388

    Google Scholar 

  • Cvrckova F, Nasmyth K (1993) Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation. EMBO J 12:5277–5286

    CAS  PubMed  Google Scholar 

  • Datar SA, Jacobs HW, de la Cruz AF, Lehner CF, Edgar BA (2000) The Drosophila cyclin D-Cdk4 complex promotes cellular growth. EMBO J 19:4543–4554

    Article  CAS  PubMed  Google Scholar 

  • Dilova I, Chen CY, Powers T (2002) Mks1 in concert with TOR signaling negatively regulates RTG target gene expression in S. cerevisiae. Curr Biol 12:389–395

    Google Scholar 

  • Dirick L, Bohm T, Nasmyth K (1995) Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. EMBO J 14:4803–4813

    CAS  PubMed  Google Scholar 

  • Elledge SJ, Zhou Z, Allen JB, Navas TA (1993) DNA damage and cell cycle regulation of ribonucleotide reductase. Bioessays 15:333–339

    CAS  PubMed  Google Scholar 

  • Elliott SG, McLaughlin CS (1978) Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 75:4384–4388

    CAS  PubMed  Google Scholar 

  • Epstein CB, Waddle JA, Hale WT, Dave V, Thornton J, Macatee TL, Garner HR, Butow RA (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12:297–308

    CAS  PubMed  Google Scholar 

  • Fewell SW, Travers KJ, Weissman JS, Brodsky JL (2001) The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 35:149–191

    Article  CAS  PubMed  Google Scholar 

  • Flick K, Chapman-Shimshoni D, Stuart D, Guaderrama M, Wittenberg C (1998) Regulation of cell size by glucose is exerted via repression of the CLN1 promoter. Mol Cell Biol 18:2492–501

    CAS  PubMed  Google Scholar 

  • Guillamon JM, van Riel NA, Giuseppin ML, Verrips CT (2001) The glutamate synthase (GOGAT) of Saccharomyces cerevisiae plays an important role in central nitrogen metabolism. FEMS Yeast Res 1:169–175

    Article  CAS  PubMed  Google Scholar 

  • Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32:671–680

    CAS  PubMed  Google Scholar 

  • Holmes AR, Collings A, Farnden KJ, Shepherd MG (1989) Ammonium assimilation by Candida albicans and other yeasts: evidence for activity of glutamate synthase. J Gen Microbiol 135:1423–1430

    CAS  PubMed  Google Scholar 

  • Johnson LN, O’Reilly M (1996) Control by phosphorylation. Curr Opin Struct Biol 6:762–769

    Article  CAS  PubMed  Google Scholar 

  • Johnston GC, Pringle JR, Hartwell LH (1977) Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 105:79–98

    CAS  PubMed  Google Scholar 

  • Johnston LH, Johnson AL (1997) Elutriation of budding yeast. Methods Enzymol 283:342–350

    CAS  PubMed  Google Scholar 

  • Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Kirchman PA, Kim S, Lai CY, Jazwinski SM (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152:179–190

    CAS  PubMed  Google Scholar 

  • Labidi M, Laberge S, Vezina LP, Antoun H (2000) The dnaJ ( hsp40) locus in Rhizobium leguminosarum bv. phaseoli is required for the establishment of an effective symbiosis with Phaseolus vulgaris. Mol Plant Microbe Interact 13:1271–1274

    CAS  PubMed  Google Scholar 

  • Loeb JD, Kerentseva TA, Pan T, Sepulveda-Becerra M, Liu H (1999) Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Genetics 153:1535–1546

    PubMed  Google Scholar 

  • Madhani HD, Galitski T, Lander ES, Fink GR (1999) Effectors of a developmental mitogen-activated protein kinase cascade revealed by expression signatures of signaling mutants. Proc Natl Acad Sci USA 96:12530–5.

    Article  CAS  PubMed  Google Scholar 

  • Magasanik B (1992) Regulation of nitrogen utilization. In: Broach J, Pringle J, Jones E (eds) The Molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 283–317

  • Marek ET, Dickson RC (1987) Cloning and characterization of Saccharomyces cerevisiae genes that confer L-methionine sulfoximine and tabtoxin resistance. J Bacteriol 169:2440–2448

    CAS  PubMed  Google Scholar 

  • Meyer CA, Jacobs HW, Datar SA, Du W, Edgar BA, Lehner CF (2000) Drosophila cdk4 is required for normal growth and is dispensable for cell cycle progression. EMBO J 19:4533–4542

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa S, Endo T (1997) The yeast JEM1p Is a DnaJ-like protein of the endoplasmic reticulum membrane required for nuclear fusion. J Biol Chem 272:12889–12892

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa S, Endo T (1998) Reinvestigation of the functions of the hydrophobic segment of Jem1p, a yeast endoplasmic reticulum membrane protein mediating nuclear fusion. Biochem Biophys Res Commun 244:785–789

    Article  CAS  PubMed  Google Scholar 

  • Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388:167–171

    Article  CAS  PubMed  Google Scholar 

  • Paquin C, Adams J (1983) Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302:495–500

    CAS  PubMed  Google Scholar 

  • Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235:576–580

    CAS  PubMed  Google Scholar 

  • Polymenis M, Schmidt EV (1997) Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev 11:2522–2531

    CAS  PubMed  Google Scholar 

  • Polymenis M, Schmidt EV (1999) Coordination of cell growth with cell division. Curr Opin Genet Dev 9:76–80

    CAS  PubMed  Google Scholar 

  • Pringle JR, Hartwell LH (1981) The Saccharomyces cerevisiae cell cycle. In: Strathern JD, Jones EW, Broach JD (eds) The Molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 97–142

  • Richardson HE, Wittenberg C, Cross F, Reed SI (1989) An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127–1133

    CAS  PubMed  Google Scholar 

  • Rohde J, Heitman J, Cardenas ME (2001) The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276:9583–9586

    Article  CAS  PubMed  Google Scholar 

  • Roon RJ, Even HL, Larimore F (1974) Glutamate synthase: properties of the reduced nicotinamide adenine dinucleotide-dependent enzyme from Saccharomyces cerevisiae. J Bacteriol 118:89–95

    CAS  PubMed  Google Scholar 

  • Schneider BL, Yang QH, Futcher AB (1996) Linkage of replication to start by the Cdk inhibitor Sic1. Science 272:560–562

    CAS  PubMed  Google Scholar 

  • Sekito T, Liu Z, Thornton J, Butow RA (2002) RTG-dependent mitochondria-to-nucleus signaling Is regulated by MKS1 and is linked to formation of yeast prion [ URE3]. Mol Biol Cell 13:795–804

    Article  CAS  PubMed  Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    CAS  PubMed  Google Scholar 

  • Tapon N, Moberg KH, Hariharan IK (2001) The coupling of cell growth to the cell cycle. Curr Opin Cell Biol 13:731–737

    Article  CAS  PubMed  Google Scholar 

  • Ter Schure EG, van Riel NA, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    PubMed  Google Scholar 

  • Thomas G, Hall MN (1997) TOR signalling and control of cell growth. Curr Opin Cell Biol 9:782–787

    Google Scholar 

  • Tokiwa G, Tyers M, Volpe T, Futcher B (1994) Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature 371:342–345

    CAS  PubMed  Google Scholar 

  • Tyers M (1996) The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start. Proc Natl Acad Sci USA 93:7772–7776

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela L, Ballario P, Aranda C, Filetici P, Gonzalez A (1998) Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae. J Bacteriol 180:3533–3540

    CAS  PubMed  Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    CAS  PubMed  Google Scholar 

  • Wijnen H, Landman A, Futcher B (2002) The G(1) cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Mol Cell Biol 22:4402–4418

    Article  CAS  PubMed  Google Scholar 

  • Williamson DH, Scopes AW (1960) Protein synthesis and nitrogen uptake in synchronously dividing cultures of Saccharomyces cerevisiae. J Inst Brew 67:39–42

    Google Scholar 

  • Winzeler EA, et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg C, Reed SI (1996) Plugging it in: signaling circuits and the yeast cell cycle. Curr Opin Cell Biol 8:223–230

    Google Scholar 

Download references

Acknowledgements

We thank A. Gonzalez for her generous gift of anti-Glt1p antibody, T. Endo for kindly providing the JEM1 plasmids, and S. Haase for suggesting the use of Sytox for DNA content measurements. We are grateful to our colleagues at Texas A&M, especially to J. Miller for flow cytometry; P. Fitzpatrick and P. Sobrado for help and advice on enzymatic assays; and J. Hu and R. Young for continuous discussions. We also thank I. Hariharan for discussions. This work was supported by grants to M.P. from the American Heart Association-Texas Affiliate (0060115Y) and the National Institutes of Health (RO1-GM62377)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Polymenis.

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryan, B.A., McGrew, E., Lu, Y. et al. Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae . Mol Genet Genomics 271, 72–81 (2004). https://doi.org/10.1007/s00438-003-0957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0957-5

Keywords

Navigation