Skip to main content
Log in

Application of DNA barcoding and morphometric analysis in differentiating cystacanths of Polymorphus species (Acanthocephala: Polymorphidae) from central Alberta, Canada

  • Genetics, Evolution, and Phylogeny - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Acanthocephalans are multi-host endoparasites, many of which use freshwater amphipods as intermediate hosts for their larval stages (e.g., cystacanths) while adults live in the intestines of vertebrates, including waterfowl. In central Alberta, Canada, several co-occurring species of the acanthocephalan genus Polymorphus use the amphipod Gammarus lacustris Sars, 1863 as an intermediate host. We applied DNA barcoding and morphometric analysis to differentiate cystacanth larvae from G. lacustris sampled from 17 Albertan water bodies. We slide-mounted specimens and measured morphological traits relating to proboscis hooks. We sequenced the standard DNA barcoding region of the mitochondrial cytochrome c oxidase subunit I gene (COI). Morphometric analysis suggested that the acanthocephalans we collected belonged to four morphologically different groups that keyed to Polymorphus contortus (Bremser, 1821) Travassos, 1926; P. marilis Van Cleave, 1939; P. paradoxus Connel et Corner, 1957; and P. strumosoides (Lundström, 1942) Amin, 2013. Our Bayesian tree based on COI sequences generally corroborated the morphological results and supported that the specimens assigned to P. cf. contortus and P. cf. strumosoides belong to two distinct species. In contrast, the Bayesian tree showed that specimens of P. cf. marilis were nested as a cluster within the P. cf. paradoxus clade. Similarly, small pairwise genetic distance (< 2%) between specimens identified as P. cf. contortus and P. cf. strumosoides suggests that they are conspecific. Future studies should use morphology and sequence data from adult acanthocephalans to assess the taxonomic identity of the cystacanth-based Polymorphus taxa. Our study is the first to provide genetic information for the four Polymorphus taxa and emphasizes the importance of applying multiple approaches to differentiate parasite species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcántar-Escalera FJ, García-Varela M, Vázquez-Domínguez E, Pérez-Ponce de León G (2013) Using DNA barcoding to link cystacanths and adults of the acanthocephalan Polymorphus brevis in central Mexico. Mol Ecol Resour 13:1116–1124

    PubMed  Google Scholar 

  • Amin OM (1992) Review of the genus Polymorphus Lühe, 1911 (Acanthocephala: Polymorphidae) with the synonymization of Hexaglandula Petrochenko, 1950, and Subcorynosoma Khokhlova, 1967, and a key to the species. Qatar Univ Sci J 12:115–123

    Google Scholar 

  • Amin OM (2013) Classification of the Acanthocephala. Folia Parasitol 60:273–305

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Google Scholar 

  • Barčák D, Oros M, Hanzelová V, Scholz T (2014) Phenotypic plasticity in Caryophyllaeus brachycollis Janiszewska, 1953 (Cestoda: Caryophyllidea): does fish host play a role? Syst Parasitol 88:153–166

    Article  Google Scholar 

  • Bauer A, Haine ER, Perrot-Minnot MJ, Rigaud T (2005) The acanthocephalan parasite Polymorphus minutus alters the geotactic and clinging behaviours of two sympatric amphipod hosts: the native Gammarus pulex and the invasive Gammarus roeseli. J Zool 267:39–43

    Article  Google Scholar 

  • Bethel WM, Holmes JC (1973) Altered evasive behavior and responses to light in amphipods harboring acanthocephalan cystacanths. J Parasitol 59:945–956

    Article  Google Scholar 

  • Bethel WM, Holmes JC (1974) Correlation of development of altered evasive behavior in Gammarus lacustris (Amphipoda) harboring cystacanths of Polymorphus paradoxus (Acanthocephala) with the infectivity to the definitive host. J Parasitol 60:272–274

    Article  CAS  Google Scholar 

  • Brazenor AK, Saunders RJ, Miller TL, Hutson KS (2018) Morphological variation in the cosmopolitan fish parasite Neobenedenia girellae (Capsalidae: Monogenea). Int J Parasitol 48:125–134

    Article  Google Scholar 

  • Buckner S, Nickol B (1975) Host specificity and lack of hybridization of Moniliformis clarki (Ward 1917) Chandler 1921 and Moniliformis moniliformis (Bremser 1811) Travassos 1915. J Parasitol 61:991–995

    Article  CAS  Google Scholar 

  • Butterworth EW (1982) A study of the structure and organization of intestinal helminth communities in ten species of waterfowl (Anatinae). Ph.D. thesis, University of Alberta, Edmonton, Alberta

  • Caffara M, Locke SA, Gustinelli A, Marcogliese DJ, Fioravanti ML (2011) Morphological and molecular differentiation of Clinostomum complanatum and Clinostomum marginatum (Digenea: Clinostomidae) metacercariae and adults. J Parasitol 97:884–891

    Article  Google Scholar 

  • Connell R, Corner AH (1957) Polymorphus paradoxus sp. nov. (Acanthocephala) parasitizing beavers and muskrats in Alberta, Canada. Can J Zool 35:525–533

    Article  Google Scholar 

  • Crompton DWT, Nickol BB (1985) Biology of the Acanthocephala. Cambridge University Press, Cambridge

    Google Scholar 

  • Denny M (1969) Life-cycles of helminth parasites using Gammarus lacustris as an intermediate host in a Canadian lake. Parasitology 59:795–827

    Article  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  Google Scholar 

  • Gordy MA, Locke SA, Rawlings TA, Lapierre AR, Hanington PC (2017) Molecular and morphological evidence for nine species in North American Australapatemon (Sudarikov, 1959): a phylogeny expansion with description of the zygocercous Australapatemon mclaughlini n. sp. Parasitol Res 116:2181–2198

    Article  Google Scholar 

  • Grabner D, Doliwa A, Bulantová J, Horák P, Sures B (2020) Morphological comparison of genetically differentiated Polymorphus cf. minutus types. Parasitol Res 119:153–163

    Article  Google Scholar 

  • Helluy S, Holmes JC (1990) Serotonin, octopamine, and the clinging behavior induced by the parasite Polymorphus paradoxus (Acanthocephala) in Gammarus lacustris (Crustacea). Can J Zool 68:1214–1220

    Article  CAS  Google Scholar 

  • Huffman DG, Bullock WL (1975) Meristograms: graphical analysis of serial variation of proboscis hooks of Echinorhynchus (Acanthocephala). Syst Biol 24:333–345

    Article  Google Scholar 

  • Kennedy CR (2006) Ecology of the Acanthocephala. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773

    CAS  PubMed  Google Scholar 

  • Li L, Wayland MT, Chen HX, Yang Y (2019) Remarkable morphological variation in the proboscis of Neorhadinorhynchus nudus (Harada, 1938) (Acanthocephala: Echinorhynchida). Parasitology 146:348–355

    Article  Google Scholar 

  • Locke SA, McLaughlin JD, Lapierre AR, Johnson PTJ, Marcogliese DJ (2011) Linking larvae and adults of Apharyngostrigea cornu, Hysteromorpha triloba, and Alaria mustelae (Diplostomoidea: Digenea) using molecular data. J Parasitol 97:846–851

    Article  Google Scholar 

  • McDonald ME (1988) Key to Acanthocephala reported in waterfowl. Resource Publication 173, United States Department of the Interior Fish and Wildlife Service, Washington, D. C

  • Nadler SA, Pérez-Ponce de León G (2011) Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138:1688–1709

    Article  CAS  Google Scholar 

  • Podesta RB, Holmes JC (1970) The life cycles of three polymorphids (Acanthocephala) occurring as juveniles in Hyalella azteca (Amphipoda) at Cooking Lake. Alberta J Parasitol 56:1118–1123

    Article  Google Scholar 

  • Poulin R, Morand S (2005) Parasite biodiversity. Smithsonian Institution, Washington, DC

    Google Scholar 

  • Steinauer ML, Nickol BB, Ortí G (2007) Cryptic speciation and patterns of phenotypic variation of a highly variable acanthocephalan parasite. Mol Ecol 16:4097–4109

    Article  CAS  Google Scholar 

  • Stock TM, Holmes JC (1987) Host specificity and exchange of intestinal helminths among four species of grebes (Podicipedidae). Can J Zool 65:669–676

    Article  Google Scholar 

  • Storer RW (2000) The metazoan parasite fauna of grebes (Aves: Podicipediformes) and its relationship to the birds' biology. Miscellaneous Publications of the University of Michigan Museum of Zoology 188:1–74

  • Tokeson JPE, Holmes JC (1982) The effects of temperature and oxygen on the development of Polymorphus marilis (Acanthocephala) in Gammarus lacustris (Amphipoda). J Parasitol 68:112–119

    Article  Google Scholar 

  • Wayland MT (2010) Proboscis profiler: a tool for detecting acanthocephalan morphotypes. Syst Parasitol 76:159–167

    Article  Google Scholar 

  • Wickström LM, Hantula J, Haukisalmi V, Henttonen H (2001) Genetic and morphometric variation in the Holarctic helminth parasite Andrya arctica (Cestoda, Anoplocephalidae) in relation to the divergence of its lemming hosts (Dicrostonyx spp.). Zool J Linnean Soc 131:443–457

    Article  Google Scholar 

  • Zittel M, Grabner D, Wlecklik A, Sures B, Leese F, Taraschewski H, Weigand AM (2018) Cryptic species and their utilization of indigenous and non-indigenous intermediate hosts in the acanthocephalan Polymorphus minutus sensu lato (Polymorphidae). Parasitology 145:1421–1429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Drs. Allen Shostak and Cynthia Paszkowski for their helpful comments on a very early version of the manuscript, to Dr. Corey Davis for his help with molecular techniques, to Andrew Cook for insightful discussion on phylogenetic analysis, and to Victoria Giacobbo, Dr. Michelle Gordy and Dr. Patrick Hanington for their help in sampling amphipods and associated acanthocephalans in Albertan water bodies. We are also grateful to two anonymous reviewers for constructive suggestions for improving the earlier version of this manuscript.

Funding

This study was financially supported by Natural Sciences and Engineering Research Council of Canada Discovery Grant to H. Proctor and an Alberta Conservation Association Grant in Biodiversity to Z. Song and H. Proctor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoyan Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Georg von Samson-Himmelstjerna

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1681 kb)

ESM 2

(XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Proctor, H. Application of DNA barcoding and morphometric analysis in differentiating cystacanths of Polymorphus species (Acanthocephala: Polymorphidae) from central Alberta, Canada. Parasitol Res 119, 3359–3368 (2020). https://doi.org/10.1007/s00436-020-06870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06870-6

Keywords

Navigation