Skip to main content
Log in

Evolution of the metathoracic tympanal ear and its mesothoracic homologue in the Macrolepidoptera (Insecta)

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract 

Two independent methods of comparison, serial homology and phylogenetic character mapping, are employed to investigate the evolutionary origin of the noctuoid moth (Noctuoidea) ear sensory organ. First, neurobiotin and Janus green B staining techniques are used to describe a novel mesothoracic chordotonal organ in the hawkmoth, Manduca sexta, which is shown to be serially homologous to the noctuoid metathoracic tympanal organ. This chordotonal organ comprises a proximal scolopidial region with three bipolar sensory cells, and a long flexible strand (composed of attachment cells) that connects peripherally to an unspecialized membrane ventral to the axillary cord of the fore-wing. Homology to the tympanal chordotonal organ in the Noctuoidea is proposed from anatomical comparisons of the meso- and metathoracic nerve branches and their corresponding peripheral attachment sites. Second, the general structure (noting sensory cell numbers, gross anatomy, and location of peripheral attachment sites) of both meso- and metathoracic organs is surveyed in 23 species representing seven superfamilies of the Lepidoptera. The structure of the wing-hinge chordotonal organ in both thoracic segments was found to be remarkably conserved in all superfamilies of the Macrolepidoptera examined except the Noctuoidea, where fewer than three cells occur in the metathoracic ear (one cell in representatives of the Notodontidae and two cells in those of other families examined), and at the mesothoracic wing-hinge (two cells) in the Notodontidae only. By mapping cell numbers onto current phylogenies of the Macrolepidoptera, we demonstrate that the three-celled wing-hinge chordotonal organ, believed to be a wing proprioceptor, represents the plesiomorphic state from which the tympanal organ in the Noctuoidea evolved. This ’trend toward simplicity’ in the noctuoid ear contrasts an apparent ’trend toward complexity’ in several other insect hearing organs where atympanate homologues have been studied. The advantages to having fewer rather than more cells in the moth ear, which functions primarily to detect the echolocation calls of bats, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Accepted: 18 June 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yack, J., Scudder, G. & Fullard, J. Evolution of the metathoracic tympanal ear and its mesothoracic homologue in the Macrolepidoptera (Insecta). Zoomorphology 119, 93–103 (1999). https://doi.org/10.1007/s004350050084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004350050084

Keywords

Navigation