Skip to main content

Advertisement

Log in

Superresolution imaging of viral protein trafficking

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The endoplasmic reticulum (ER) membrane is closely apposed to the outer mitochondrial membrane (OMM), which facilitates communication between these organelles. These contacts, known as mitochondria-associated membranes (MAM), facilitate calcium signaling, lipid transfer, as well as antiviral and stress responses. How cellular proteins traffic to the MAM, are distributed therein, and interact with ER and mitochondrial proteins are subject of great interest. The human cytomegalovirus UL37 exon 1 protein or viral mitochondria-localized inhibitor of apoptosis (vMIA) is crucial for viral growth. Upon synthesis at the ER, vMIA traffics to the MAM and OMM, where it reprograms the organization and function of these compartments. vMIA significantly changes the abundance of cellular proteins at the MAM and OMM, including proteins that regulate calcium homeostasis and cell death. Through the use of superresolution imaging, we have shown that vMIA is distributed at the OMM in nanometer scale clusters. This is similar to the clusters reported for the mitochondrial calcium channel, VDAC, as well as electron transport chain, translocase of the OMM complex, and mitochondrial inner membrane organizing system components. Thus, aside from addressing how vMIA targets the MAM and regulates survival of infected cells, biochemical studies and superresolution imaging of vMIA offer insights into the formation, organization, and functioning of MAM. Here, we discuss these insights into trafficking, function, and organization of vMIA at the MAM and OMM and discuss how the use of superresolution imaging is contributing to the study of the formation and trafficking of viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mavinakere MS, Williamson CD, Goldmacher VS, Colberg-Poley AM (2006) Processing of human cytomegalovirus UL37 mutant glycoproteins in the endoplasmic reticulum lumen prior to mitochondrial importation. J Virol 80(14):6771–6783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Williamson CD, Colberg-Poley AM (2010) Intracellular sorting signals for sequential trafficking of human cytomegalovirus UL37 proteins to the endoplasmic reticulum and mitochondria. J Virol 84:6400–6409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bozidis P, Williamson CD, Colberg-Poley AM (2008) Mitochondrial and secretory human cytomegalovirus UL37 proteins traffic into mitochondrion-associated membranes of human cells. J Virol 82(6):2715–2726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bozidis P, Williamson CD, Wong DS, Colberg-Poley AM (2010) Trafficking of UL37 proteins into mitochondrion-associated membranes during permissive human cytomegalovirus infection. J Virol 84(15):7898–7903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Williamson CD, Zhang A, Colberg-Poley AM (2011) The human cytomegalovirus protein UL37 exon 1 associates with internal lipid rafts. J Virol 85(5):2100–2111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zhang A, Williamson CD, Wong DS et al (2011) Quantitative proteomic analyses of human cytomegalovirus-induced restructuring of endoplasmic reticulum–mitochondrial contacts at late times of infection. Mol Cell Proteomics 10(M111):009936

    PubMed  Google Scholar 

  7. Mavinakere MS, Colberg-Poley AM (2004) Dual targeting of the human cytomegalovirus UL37 exon 1 protein during permissive infection. J Gen Virol 85(Pt 2):323–329

    Article  CAS  PubMed  Google Scholar 

  8. Csordas G, Renken C, Varnai P et al (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174(7):915–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Szabadkai G, Bianchi K, Varnai P et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175(6):901–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610

    Article  PubMed  Google Scholar 

  12. Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK (2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol 190(3):363–375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cerqua C, Anesti V, Pyakurel A et al (2010) Trichoplein/mitostatin regulates endoplasmic reticulum–mitochondria juxtaposition. EMBO Rep 11(11):854–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Simmen T, Aslan JE, Blagoveshchenskaya AD et al (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24(4):717–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Cardenas C, Miller RA, Smith I et al (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142(2):270–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Stone SJ, Vance JE (2000) Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J Biol Chem 275(44):34534–34540

    Article  CAS  PubMed  Google Scholar 

  18. Bravo R, Vicencio JM, Parra V et al (2011) Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 124(Pt 13):2143–2152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hajnoczky G, Csordas G, Das S et al (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40(5–6):553–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Horner SM, Park HS, Gale M Jr (2012) Control of innate immune signaling and membrane targeting by the Hepatitis C virus NS3/4A protease are governed by the NS3 helix alpha0. J Virol 86(6):3112–3120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Castanier C, Garcin D, Vazquez A, Arnoult D (2010) Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep 11(2):133–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Reboredo M, Greaves RF, Hahn G (2004) Human cytomegalovirus proteins encoded by UL37 exon 1 protect infected fibroblasts against virus-induced apoptosis and are required for efficient virus replication. J Gen Virol 85(Pt 12):3555–3567

    Article  CAS  PubMed  Google Scholar 

  23. Goldmacher VS, Bartle LM, Skaletskaya A et al (1999) A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci USA 96(22):12536–12541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Poncet D, Pauleau AL, Szabadkai G et al (2006) Cytopathic effects of the cytomegalovirus-encoded apoptosis inhibitory protein vMIA. J Cell Biol 174(7):985–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ma J, Edlich F, Bermejo GA, Norris KL, Youle RJ, Tjandra N (2012) Structural mechanism of Bax inhibition by cytomegalovirus protein vMIA. Proc Natl Acad Sci USA 109(51):20901–20906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pauleau AL, Larochette N, Giordanetto F et al (2007) Structure-function analysis of the interaction between Bax and the cytomegalovirus-encoded protein vMIA. Oncogene 26(50):7067–7080

    Article  CAS  PubMed  Google Scholar 

  27. Seo JY, Yaneva R, Hinson ER, Cresswell P (2011) Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science 332(6033):1093–1097

    Article  CAS  PubMed  Google Scholar 

  28. Dukanovic J, Rapaport D (2011) Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochim Biophys Acta 1808(3):971–980

    Article  CAS  PubMed  Google Scholar 

  29. Rapaport D (2003) Finding the right organelle. Targeting signals in mitochondrial outer-membrane proteins. EMBO Rep 4(10):948–952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kanaji S, Iwahashi J, Kida Y, Sakaguchi M, Mihara K (2000) Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J Cell Biol 151(2):277–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Miyazaki E, Kida Y, Mihara K, Sakaguchi M (2005) Switching the sorting mode of membrane proteins from cotranslational endoplasmic reticulum targeting to posttranslational mitochondrial import. Mol Biol Cell 16(4):1788–1799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Chandra NC, Spiro MJ, Spiro RG (1998) Identification of a glycoprotein from rat liver mitochondrial inner membrane and demonstration of its origin in the endoplasmic reticulum. J Biol Chem 273(31):19715–19721

    Article  CAS  PubMed  Google Scholar 

  33. Chiang SF, Huang CY, Lin TY, Chiou SH, Chow KC (2012) An alternative import pathway of AIF to the mitochondria. Int J Mol Med 29(3):365–372

    CAS  PubMed  Google Scholar 

  34. Stone SJ, Levin MC, Zhou P, Han J, Walther TC, Farese RV Jr (2009) The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem 284(8):5352–5361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Jiang W, Napoli JL (2013) The retinol dehydrogenase Rdh10 localizes to lipid droplets during acyl ester biosynthesis. J Biol Chem 288(1):589–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hayashi T, Fujimoto M (2010) Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum–mitochondria junction. Mol Pharmacol 77(4):517–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Browman DT, Resek ME, Zajchowski LD, Robbins SM (2006) Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci 119(Pt 15):3149–3160

    Article  CAS  PubMed  Google Scholar 

  38. Pearce MM, Wang Y, Kelley GG, Wojcikiewicz RJ (2007) SPFH2 mediates the endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors and other substrates in mammalian cells. J Biol Chem 282(28):20104–20115

    Article  CAS  PubMed  Google Scholar 

  39. Colberg-Poley AM, Williamson CD (2013) Intracellular sorting and trafficking of cytomegalovirus proteins during permissive infection. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, 2nd edn. Caister Academic Press/Horizon, Norwich, pp 196–229

  40. Hendershot LM (2004) The ER function BiP is a master regulator of ER function. Mt Sinai J Med 71(5):289–297

    PubMed  Google Scholar 

  41. Hajnoczky G, Booth D, Csordas G et al (2014) Reliance of ER-mitochondrial calcium signaling on mitochondrial EF-hand Ca2+ binding proteins: Miros, MICUs, LETM1 and solute carriers. Curr Opin Cell Biol 29:133–141

    Article  CAS  PubMed  Google Scholar 

  42. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610

    Article  CAS  PubMed  Google Scholar 

  43. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340

    Article  PubMed Central  PubMed  Google Scholar 

  44. Csordas G, Golenar T, Seifert EL et al (2013) MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter. Cell Metab 17(6):976–987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Perocchi F, Gohil VM, Girgis HS et al (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467(7313):291–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326(5949):144–147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Sharon-Friling R, Goodhouse J, Colberg-Poley AM, Shenk T (2006) Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores. Proc Natl Acad Sci USA 103(50):19117–19122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Arruda AP, Pers BM, Parlakgul G, Guney E, Inouye K, Hotamisligil GS (2014) Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med 20(12):1427–1435

    Article  CAS  PubMed  Google Scholar 

  49. Chambers JW, Maguire TG, Alwine JC (2010) Glutamine metabolism is essential for human cytomegalovirus infection. J Virol 84(4):1867–1873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2(12):e132

    Article  PubMed Central  PubMed  Google Scholar 

  51. Zhang A, Hildreth RL, Colberg-Poley AM (2013) Human cytomegalovirus inhibits apoptosis by proteasome-mediated degradation of Bax at endoplasmic reticulum-mitochondrion contacts. J Virol 87(10):5657–5668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 382(Pt 2):527–533

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Ardail D, Popa I, Bodennec J, Louisot P, Schmitt D, Portoukalian J (2003) The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. Biochem J 371(Pt 3):1013–1019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Osman C, Voelker DR, Langer T (2011) Making heads or tails of phospholipids in mitochondria. J Cell Biol 192(1):7–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Reikine S, Nguyen JB, Modis Y (2014) Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol 5:342

    Article  PubMed Central  PubMed  Google Scholar 

  56. Kato H, Takeuchi O, Sato S et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089):101–105

    Article  CAS  PubMed  Google Scholar 

  57. Hornung V, Ellegast J, Kim S et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997

    Article  PubMed  Google Scholar 

  58. Weber M, Gawanbacht A, Habjan M et al (2013) Incoming RNA virus nucleocapsids containing a 5′-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe 13(3):336–346

    Article  CAS  PubMed  Google Scholar 

  59. Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM (2011) Structural insights into RNA recognition by RIG-I. Cell 147(2):409–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zeng W, Sun L, Jiang X et al (2010) Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141(2):315–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Peisley A, Wu B, Xu H, Chen ZJ, Hur S (2014) Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509(7498):110–114

    Article  CAS  PubMed  Google Scholar 

  62. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455(7213):674–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Zhong B, Yang Y, Li S et al (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29(4):538–550

    Article  CAS  PubMed  Google Scholar 

  64. Ishikawa H, Barber GN (2011) The STING pathway and regulation of innate immune signaling in response to DNA pathogens. Cell Mol Life Sci 68(7):1157–1165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Kaarbo M, Ager-Wick E, Osenbroch PO et al (2011) Human cytomegalovirus infection increases mitochondrial biogenesis. Mitochondrion 11(6):935–945

    Article  CAS  PubMed  Google Scholar 

  66. Norris KL, Youle RJ (2008) Cytomegalovirus proteins vMIA and m38.5 link mitochondrial morphogenesis to Bcl-2 family proteins. J Virol 82(13):6232–6243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. McCormick AL, Smith VL, Chow D, Mocarski ES (2003) Disruption of mitochondrial networks by the human cytomegalovirus UL37 gene product viral mitochondrion-localized inhibitor of apoptosis. J Virol 77(1):631–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Roumier T, Szabadkai G, Simoni AM et al (2006) HIV-1 protease inhibitors and cytomegalovirus vMIA induce mitochondrial fragmentation without triggering apoptosis. Cell Death Differ 13(2):348–351

    Article  CAS  PubMed  Google Scholar 

  69. Hayajneh WA, Colberg-Poley AM, Skaletskaya A et al (2001) The sequence and antiapoptotic functional domains of the human cytomegalovirus UL37 exon 1 immediate early protein are conserved in multiple primary strains. Virology 279(1):233–240

    Article  CAS  PubMed  Google Scholar 

  70. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87

    Article  CAS  PubMed  Google Scholar 

  71. Dyba M, Hell SW (2002) Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys Rev Lett 88(16):163901

    Article  PubMed  Google Scholar 

  72. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  73. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Muller B, Heilemann M (2013) Shedding new light on viruses: super-resolution microscopy for studying human immunodeficiency virus. Trends Microbiol 21(10):522–533

    Article  PubMed  Google Scholar 

  75. Grove J (2014) Super-resolution microscopy: a virus’ eye view of the cell. Viruses 6(3):1365–1378

    Article  PubMed Central  PubMed  Google Scholar 

  76. Chojnacki J, Staudt T, Glass B et al (2012) Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338(6106):524–528

    Article  CAS  PubMed  Google Scholar 

  77. Sougrat R, Bartesaghi A, Lifson JD et al (2007) Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog 3(5):e63

    Article  PubMed Central  PubMed  Google Scholar 

  78. Wang IH, Suomalainen M, Andriasyan V et al (2013) Tracking viral genomes in host cells at single-molecule resolution. Cell Host Microbe 14(4):468–480

    Article  CAS  PubMed  Google Scholar 

  79. Pereira CF, Rossy J, Owen DM, Mak J, Gaus K (2012) HIV taken by STORM: super-resolution fluorescence microscopy of a viral infection. Virol J 9:84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Lelek M, Di Nunzio F, Henriques R, Charneau P, Arhel N, Zimmer C (2012) Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proc Natl Acad Sci USA 109(22):8564–8569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Monaghan P, Green D, Pallister J et al (2014) Detailed morphological characterisation of Hendra virus infection of different cell types using super-resolution and conventional imaging. Virol J 11(1):200

    Article  PubMed Central  PubMed  Google Scholar 

  82. Folling J, Bossi M, Bock H et al (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945

    Article  PubMed  Google Scholar 

  83. Hodges J, Tang X, Landesman MB et al (2013) Asymmetric packaging of polymerases within vesicular stomatitis virus. Biochem Biophys Res Commun 440(2):271–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Horsington J, Turnbull L, Whitchurch CB, Newsome TP (2012) Sub-viral imaging of vaccinia virus using super-resolution microscopy. J Virol Methods 186(1–2):132–136

    Article  CAS  PubMed  Google Scholar 

  85. Horsington J, Lynn H, Turnbull L et al (2013) A36-dependent actin filament nucleation promotes release of vaccinia virus. PLoS Pathog 9(3):e1003239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Felts RL, Narayan K, Estes JD et al (2010) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci USA 107(30):13336–13341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Eggert D, Rosch K, Reimer R, Herker E (2014) Visualization and analysis of hepatitis C virus structural proteins at lipid droplets by super-resolution microscopy. PLoS One 9(7):e102511

    Article  PubMed Central  PubMed  Google Scholar 

  88. Chong MK, Chua AJ, Tan TT, Tan SH, Ng ML (2014) Microscopy techniques in flavivirus research. Micron 59:33–43

    Article  CAS  PubMed  Google Scholar 

  89. Linnik O, Liesche J, Tilsner J, Oparka KJ (2013) Unraveling the structure of viral replication complexes at super-resolution. Front Plant Sci 4:6

    Article  PubMed Central  PubMed  Google Scholar 

  90. Xu H, He X, Zheng H et al (2014) Structural basis for the prion-like MAVS filaments in antiviral innate immunity. eLife 3:e01489

    Article  PubMed Central  PubMed  Google Scholar 

  91. Manzo C, Torreno-Pina JA, Joosten B et al (2012) The neck region of the C-type lectin DC-SIGN regulates its surface spatiotemporal organization and virus-binding capacity on antigen-presenting cells. J Biol Chem 287(46):38946–38955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Liu P, Wang X, Itano MS et al (2014) Low copy numbers of DC-SIGN in cell membrane microdomains: implications for structure and function. Traffic 15(2):179–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Bhuvanendran S, Salka K, Rainey K et al (2014) Superresolution imaging of human cytomegalovirus vMIA localization in sub-mitochondrial compartments. Viruses 6(4):1612–1636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Wurm CA, Neumann D, Lauterbach MA et al (2011) Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient. Proc Natl Acad Sci USA 108(33):13546–13551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Singh H, Lu R, Rodriguez PF et al (2012) Visualization and quantification of cardiac mitochondrial protein clusters with STED microscopy. Mitochondrion 12(2):230–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Neumann D, Buckers J, Kastrup L, Hell SW, Jakobs S (2010) Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys 3(1):4

    Article  PubMed Central  PubMed  Google Scholar 

  97. Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40(3):171–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Cogliati S, Frezza C, Soriano ME et al (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155(1):160–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. van der Laan M, Bohnert M, Wiedemann N, Pfanner N (2012) Role of MINOS in mitochondrial membrane architecture and biogenesis. Trends Cell Biol 22(4):185–192

    Article  PubMed  Google Scholar 

  100. Jans DC, Wurm CA, Riedel D et al (2013) STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. Proc Natl Acad Sci USA 110(22):8936–8941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the NSF Grant (MCB 1244509) to ACP and JKJ. The confocal microscopy imaging was supported by a core Grant (1P30HD40677) to the Children’s Intellectual and Developmental Disabilities Research Center. This work was also supported by the Intramural Research Program of the National Institutes of Health including the National Institute of Biomedical Imaging and Bioengineering. We thank Kristen Rainey for assisting with imaging and analysis. We thank Andrew York and Hari Shroff for sharing MSIM analysis and deconvolution software. We thank Harald Hess for the use of the PALM analysis software, PeakSelector.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anamaris M. Colberg-Poley, George H. Patterson or Jyoti K. Jaiswal.

Additional information

This article is part of the Special Issue on Cytomegalovirus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colberg-Poley, A.M., Patterson, G.H., Salka, K. et al. Superresolution imaging of viral protein trafficking. Med Microbiol Immunol 204, 449–460 (2015). https://doi.org/10.1007/s00430-015-0395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0395-0

Keywords

Navigation