Skip to main content
Log in

Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Individual axons that form the hyperdirect pathway in Macaca fascicularis were visualized following microiontophoretic injections of biotinylated dextran amine in layer V of the primary motor cortex (M1). Twenty-eight singly labeled axons were reconstructed in 3D from serial sections. The M1 innervation of the subthalamic nucleus (STN) arises essentially from collaterals of long-ranged corticofugal axons en route to lower brainstem regions. Typically, after leaving M1, these large caliber axons (2–3 µm) enter the internal capsule and travel between caudate nucleus and putamen without providing any collateral to the striatum. More ventrally, they emit a thin collateral (0.5–1.5 µm) that runs lateromedially within the dorsal region of the STN, providing boutons en passant in the sensorimotor territory of the nucleus. In some cases, the medial tip of the collateral enters the lenticular fasciculus dorsally and yields a few beaded axonal branches in the zona incerta. In other cases, the collateral runs caudally and innervates the ventrolateral region of the red nucleus where large axon varicosities (up to 1.7 µm in diameter) are observed, many displaying perisomatic arrangements. Our ultrastructural analysis reveals a high synaptic incidence (141%) of cortical VGluT1-immunoreactive axon varicosities on distal dendrites of STN neurons, and on various afferent axons. Our single-axon reconstructions demonstrate that the so-called hyperdirect pathway derives essentially from collaterals of long-ranged corticofugal axons that are rarely exclusively devoted to the STN, as they also innervate the red nucleus and/or the zona incerta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

Avidine–biotin complex

AS:

Associative

av:

Axon varicosity

BDA:

Biotinylated dextran amine

BG:

Basal ganglia

bs:

Brainstem

Cd:

Caudate nucleus

d:

Dendrite

DAB:

Diaminobenzidine

DBS:

Deep brain stimulation

GABA:

Gamma-aminobutyric acid

Glu:

Glutamate

GP:

Globus pallidus

GPe:

External segment of the globus pallidus (external pallidum)

GPi:

Internal segment of the globus pallidus (internal pallidum)

H1 :

Forel’s field H1 (thalamic fasciculus)

H2 :

Forel’s field H2 (lenticular fasciculus)

ic:

Internal capsule

LI:

Limbic

M1:

Primary motor cortex

PB:

Phosphate buffer

PBS:

Phosphate buffer saline

PD:

Parkinson’s disease

PFA:

Paraformaldehyde

Put:

Putamen

RN:

Red nucleus

rt:

Reticular thalamic nucleus

SM:

Sensorimotor

SN:

Substantia nigra

SNr:

Substantia nigra pars reticulata

SPN:

Superior pontine nucleus

STN:

Subthalamic nucleus

Th:

Thalamus

References

  • Afsharpour S (1985) Topographical projections of the cerebral cortex to the subthalamic nucleus. J Comp Neurol 236(1):14–28. https://doi.org/10.1002/cne.902360103

    Article  CAS  PubMed  Google Scholar 

  • Akram H, Sotiropoulos SN, Jbabdi S, Georgiev D, Mahlknecht P, Hyam J, Foltynie T, Limousin P, De Vita E, Jahanshahi M (2017) Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. NeuroImage 158:332–345

    Article  PubMed  Google Scholar 

  • Anderson RW, Farokhniaee A, Gunalan K, Howell B, McIntyre CC (2018) Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation. Brain Stimul. https://doi.org/10.1016/j.brs.2018.05.008

    Article  PubMed  Google Scholar 

  • Beaudet A, Sotelo C (1981) Synaptic remodeling of serotonin axon terminals in rat agranular cerebellum. Brain Res 206(2):305–329

    Article  CAS  PubMed  Google Scholar 

  • Bevan MD, Francis CM, Bolam JP (1995) The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: convergence with GABA-positive terminals. J Comp Neurol 361(3):491–511. https://doi.org/10.1002/cne.903610312

    Article  CAS  PubMed  Google Scholar 

  • Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513(1):43–59

    Article  CAS  PubMed  Google Scholar 

  • Chu H-Y, McIver EL, Kovaleski RF, Atherton JF, Bevan MD (2017) Loss of hyperdirect pathway cortico-subthalamic inputs following degeneration of midbrain dopamine neurons. Neuron 95(6):1306–1318 (e1305)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke NP, Bolam JP (1998) Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat. J Comp Neurol 397(3):403–420

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64(1):20–24

    Article  PubMed  Google Scholar 

  • DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53(2):530–543. https://doi.org/10.1152/jn.1985.53.2.530

    Article  CAS  PubMed  Google Scholar 

  • Drouot X, Oshino S, Jarraya B, Besret L, Kishima H, Remy P, Dauguet J, Lefaucheur JP, Dolle F, Conde F, Bottlaender M, Peschanski M, Keravel Y, Hantraye P, Palfi S (2004) Functional recovery in a primate model of Parkinson’s disease following motor cortex stimulation. Neuron 44(5):769–778. https://doi.org/10.1016/j.neuron.2004.11.023

    Article  CAS  PubMed  Google Scholar 

  • Feger J, Bevan M, Crossman AR (1994) The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience 60(1):125–132

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto K, Kita H (1993) Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Res 609(1–2):185–192

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama F, Unzai T, Nakamura K, Nomura S, Kaneko T (2006) Difference in organization of corticostriatal and thalamostriatal synapses between patch and matrix compartments of rat neostriatum. Eur J Neurosci 24(10):2813–2824. https://doi.org/10.1111/j.1460-9568.2006.05177.x

    Article  PubMed  Google Scholar 

  • Gagnon D, Parent M (2014) Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions. PLoS One 9(2):e87709

    Article  PubMed  PubMed Central  Google Scholar 

  • Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119(7):1459–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgopoulos AP, DeLong MR, Crutcher MD (1983) Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J Neurosci 3(8):1586–1598

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Bolam JP (2017) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function, 2nd edn. Elsevier, Amsterdam, pp 3–32

    Google Scholar 

  • Giuffrida R, Volsi GL, Maugeri G, Perciavalle V (1985) Influences of pyramidal tract on the subthalamic nucleus in the cat. Neurosci Lett 54(2):231–235

    Article  CAS  PubMed  Google Scholar 

  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359. https://doi.org/10.1126/science.1167093

    Article  CAS  PubMed  Google Scholar 

  • Hammond C, Yelnik J (1983) Intracellular labelling of rat subthalamic neurones with horseradish peroxidase: computer analysis of dendrites and characterization of axon arborization. Neuroscience 8(4):781–790

    Article  CAS  PubMed  Google Scholar 

  • Hartmann-von Monakow K, Akert K, Künzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33(3–4):395–403

    Google Scholar 

  • Haynes WI, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J Neurosci 33(11):4804–4814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks TP, Onodera S (2012) The mammalian red nucleus and its role in motor systems, including the emergence of bipedalism and language. Prog Neurobiol 96(2):165–175

    Article  PubMed  Google Scholar 

  • Huerta MF, Kaas JH (1990) Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293(2):299–330

    Article  CAS  PubMed  Google Scholar 

  • Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. J Comp Neurol 253(4):415–439. https://doi.org/10.1002/cne.902530402

    Article  CAS  PubMed  Google Scholar 

  • Iwahori N (1978) A Golgi study on the subthalamic nucleus of the cat. J Comp Neurol 182(3):383–397. https://doi.org/10.1002/cne.901820303

    Article  CAS  PubMed  Google Scholar 

  • Iwamuro H, Tachibana Y, Ugawa Y, Saito N, Nambu A (2017) Information processing from the motor cortices to the subthalamic nucleus and globus pallidus and their somatotopic organizations revealed electrophysiologically in monkeys. Eur J Neurosci 46:2684–2701

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurgens U (1984) The efferent and afferent connections of the supplementary motor area. Brain Res 300(1):63–81

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Kita T (2011) Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. J Neurosci 31(28):10311–10322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kita T, Kita H (2012) The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J Neurosci 32(17):5990–5999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitai S, Deniau J (1981) Cortical inputs to the subthalamus: intracellular analysis. Brain Res 214(2):411–415

    Article  CAS  PubMed  Google Scholar 

  • Kuwajima M, Hall RA, Aiba A, Smith Y (2004) Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the monkey subthalamic nucleus. J Comp Neurol 474(4):589–602. https://doi.org/10.1002/cne.20158

    Article  CAS  PubMed  Google Scholar 

  • Kuwajima M, Dehoff MH, Furuichi T, Worley PF, Hall RA, Smith Y (2007) Localization and expression of group I metabotropic glutamate receptors in the mouse striatum, globus pallidus, and subthalamic nucleus: regulatory effects of MPTP treatment and constitutive Homer deletion. J Neurosci 27(23):6249–6260. https://doi.org/10.1523/JNEUROSCI.3819-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Kwan H, MacKay W, Murphy J, Wong Y (1978) Spatial organization of precentral cortex in awake primates. II. Motor outputs. J Neurophysiol 41(5):1120–1131

    Article  CAS  PubMed  Google Scholar 

  • Lemon RN (2016) Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res 1645:28–30

    Article  CAS  PubMed  Google Scholar 

  • Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D (2007) Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol 98(6):3525–3537

    Article  CAS  PubMed  Google Scholar 

  • Mathai A, Ma Y, Paré J-F, Villalba RM, Wichmann T, Smith Y (2015) Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Brain 138(4):946–962

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller J (2017) The reticular thalamic nucleus: revealing a novel phenotype of neurons and describing changes in a rat model of Parkinson’s disease. University of Otago, Dunedin

    Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425

    Article  CAS  PubMed  Google Scholar 

  • Mitrofanis J (2005) Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16(8):2671–2683

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Tokuno H, Inase M, Takada M (1997) Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neurosci Res 43(2):111–117

    Article  PubMed  Google Scholar 

  • Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23:(S3)

    Article  Google Scholar 

  • Parent A (1990) Extrinsic connections of the basal ganglia. Trends Neurosci 13(7):254–258

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20(1):128–154

    Article  CAS  PubMed  Google Scholar 

  • Parent M, Parent A (2005) Single-axon tracing and three-dimensional reconstruction of centre median-parafascicular thalamic neurons in primates. J Comp Neurol 481(1):127–144. https://doi.org/10.1002/cne.20348

    Article  PubMed  Google Scholar 

  • Parent M, Parent A (2006) Single-axon tracing study of corticostriatal projections arising from primary motor cortex in primates. J Comp Neurol 496(2):202–213

    Article  PubMed  Google Scholar 

  • Parent M, Parent A (2016) The primate basal ganglia connectome as revealed by single-axon tracing. In: Rockland KS (ed) Axons and brain architecture. Elsevier, Amsterdam, pp 27–46

    Chapter  Google Scholar 

  • Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439(2):162–175

    Article  CAS  PubMed  Google Scholar 

  • Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Rev 46(1):1–31

    Article  PubMed  Google Scholar 

  • Raju DV, Shah DJ, Wright TM, Hall RA, Smith Y (2006) Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments in rats. J Comp Neurol 499(2):231–243. https://doi.org/10.1002/cne.21099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju DV, Ahern TH, Shah DJ, Wright TM, Standaert DG, Hall RA, Smith Y (2008) Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 27(7):1647–1658

    Article  PubMed  Google Scholar 

  • Romansky KV, Usunoff KG, Ivanov DP, Galabov GP (1979) Corticosubthalamic projection in the cat: an electron microscopic study. Brain Res 163(2):319–322

    Article  CAS  PubMed  Google Scholar 

  • Rouzaire-Dubois B, Scarnati E (1985) Bilateral corticosubthalamic nucleus projections: an electrophysiological study in rats with chronic cerebral lesions. Neuroscience 15(1):69–79

    Article  CAS  PubMed  Google Scholar 

  • Sadikot AF, Parent A, Francois C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315(2):137–159. https://doi.org/10.1002/cne.903150203

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Parent M, Lévesque M, Parent A (2000) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424(1):142–152

    Article  CAS  PubMed  Google Scholar 

  • Shink E, Bevan MD, Bolam JP, Smith Y (1996) The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73(2):335–357

    Article  CAS  PubMed  Google Scholar 

  • Shook BL, Schlag-Rey M, Schlag J (1991) Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei. J Comp Neurol 307(4):562–583. https://doi.org/10.1002/cne.903070405

    Article  CAS  PubMed  Google Scholar 

  • Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol 271(4):473–492. https://doi.org/10.1002/cne.902710402

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Tseng KY (2016) Handbook of basal ganglia structure and function, vol 24. Academic Press, Cambridge

    Google Scholar 

  • Stepniewska I, Preuss TM, Kaas JH (1993) Architectionis, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys. J Comp Neurol 330(2):238–271

    Article  CAS  PubMed  Google Scholar 

  • Szabo J, Cowan W (1984) A stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis). J Comp Neurol 222(2):265–300

    Article  CAS  PubMed  Google Scholar 

  • Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK (1994) Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol 348(3):351–373

    Article  CAS  PubMed  Google Scholar 

  • Villalba RM, Smith Y (2011) Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated parkinsonian monkeys. J Comp Neurol 519(5):989–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wichmann T, DeLong MR (2016) Deep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality? Neurotherapeutics 13(2):264–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Wichmann T, Bergman H, DeLong MR (2017) Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research. J Neural Transm 125:1–12

    Google Scholar 

  • Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171(1):11–28

    Article  CAS  PubMed  Google Scholar 

  • Woolsey CN (1958) Organization of somatic sensory and motor areas of the cerebral cortex. In: Harlow HF, Woolsey CN (eds) Biological and biochemical behaviour. University of Wisconsin Press, Madison, pp 63–81

    Google Scholar 

  • Yelnik J, Percheron G (1979) Subthalamic neurons in primates: a quantitative and comparative analysis. Neuroscience 4(11):1717–1743

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by research grants from the Canadian Institutes of Health Research (CIHR MOP-153068) and the Natural Sciences and Engineering Research Council of Canada (NSERC 2018-06264 and 2018-522690) to M.P. who also benefited from a Junior II career award from the Fonds de Recherche du Québec-Santé (FRQ-S). D.C. was the recipient of MSc fellowship from FRQ-S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Parent.

Ethics declarations

Ethical approval

All experimental procedures were approved by the Comité de Protection des Animaux de l’Université Laval, in accordance with the Canadian Council on Animal Care’s Guide to the Care and Use of Experimental Animals (Ed2). Maximum efforts were made to minimize the number of animals used.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coudé, D., Parent, A. & Parent, M. Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates. Brain Struct Funct 223, 3959–3973 (2018). https://doi.org/10.1007/s00429-018-1726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1726-x

Keywords

Navigation