Skip to main content
Log in

Exposure to a diet high in fat attenuates dendritic spine density in the medial prefrontal cortex

  • Short Communication
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

A key factor in the development of obesity is the overconsumption of food calorically high in fat. Overconsumption of food high in fat not only promotes weight gain but elicits changes in reward processing. No studies to date have examined whether consumption of a high-fat (HF) diet alters structural plasticity in brain areas critical for reward processing, which may account for persistent changes in behavior and psychological function by reorganizing synaptic connectivity. To test whether dietary fat may induce structural plasticity we placed rats on one of three dietary conditions: ad libitum standard chow (SC), ad libitum 60 % HF (HF-AL), or calorically matched 60 % HF (HF-CM) for 3 weeks and then quantified dendritic spine density and type on basal and apical dendrites of pyramidal cells in layer V of the medial prefrontal cortex (mPFC) and medium spiny neurons (MSNs) of the nucleus accumbens. Our results demonstrate a significant reduction in the density of thin spines on the apical and basal segments of dendrites within the infralimbic, but not prelimbic, mPFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Vollbrecht PJ et al (2015) Pre-existing differences in motivation for food and sensitivity to cocaine-induced locomotion in obesity-prone rats. Physiol Behav 152(A):151–160

  • Baldwin AE, Sadeghian K, Kelley AE (2002) Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J Neurosci 22(3):1063–1071

    CAS  PubMed  Google Scholar 

  • Bechara A (2005) Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci 8(11):1458–1463

    Article  CAS  PubMed  Google Scholar 

  • Bjorndal B et al (2011) Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes 2011:490650

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloss EB et al (2011) Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex. J Neurosci 31(21):7831–7839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray GA, Paeratakul S, Popkin BM (2004) Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol Behav 83(4):549–555

    Article  CAS  PubMed  Google Scholar 

  • Calle EE (2007) Obesity and cancer. BMJ 335(7630):1107–1108

    Article  PubMed  PubMed Central  Google Scholar 

  • Capriles N et al (2003) A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology 168(1–2):66–74

    Article  CAS  PubMed  Google Scholar 

  • Cordeira JW et al (2010) Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system. J Neurosci 30(7):2533–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornish JL, Duffy P, Kalivas PW (1999) A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93(4):1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Crombag HS et al (2005) Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. Cereb Cortex 15(3):341–348

    Article  PubMed  Google Scholar 

  • Diana M, Spiga S, Acquas E (2006) Persistent and reversible morphine withdrawal-induced morphological changes in the nucleus accumbens. Ann NY Acad Sci 1074:446–457

    Article  CAS  PubMed  Google Scholar 

  • Dong Y et al (2005) Cocaine-induced plasticity of intrinsic membrane properties in prefrontal cortex pyramidal neurons: adaptations in potassium currents. J Neurosci 25(4):936–940

    Article  CAS  PubMed  Google Scholar 

  • Dumitriu D et al (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30(22):7507–7515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70

    Article  CAS  PubMed  Google Scholar 

  • Ferrario CR et al (2005) Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol Psychiatry 58(9):751–759

    Article  CAS  PubMed  Google Scholar 

  • Ferrario CR et al (2012) Withdrawal from cocaine self-administration alters NMDA receptor-mediated Ca2+ entry in nucleus accumbens dendritic spines. PLoS ONE 7(8):e40898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein EA et al (2009) Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff (Millwood) 28(5):w822–w831

    Article  Google Scholar 

  • Geiger BM et al (2008) Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J 22(8):2740–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger BM et al (2009) Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 159(4):1193–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183(4675):1592–1593

    Article  CAS  PubMed  Google Scholar 

  • Greenwood CE, Winocur G (1990) Learning and memory impairment in rats fed a high saturated fat diet. Behav Neural Biol 53(1):74–87

    Article  CAS  PubMed  Google Scholar 

  • Hebebrand J, Hinney A (2009) Environmental and genetic risk factors in obesity. Child Adolesc Psychiatr Clin N Am 18(1):83–94

    Article  PubMed  Google Scholar 

  • Hensrud DD (2004) Diet and obesity. Curr Opin Gastroenterol 20(2):119–124

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat A et al (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441(7096):979–983

    Article  CAS  PubMed  Google Scholar 

  • Irwin SA, Galvez R, Greenough WT (2000) Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex 10(10):1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5):635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162(8):1403–1413

    Article  PubMed  Google Scholar 

  • Kleim JA et al (1996) Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 16(14):4529–4535

    CAS  PubMed  Google Scholar 

  • Kurth T et al (2002) Body mass index and the risk of stroke in men. Arch Intern Med 162(22):2557–2562

    Article  PubMed  Google Scholar 

  • LaLumiere RT, Niehoff KE, Kalivas PW (2010) The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn Mem 17(4):168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KW et al (2006) Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci USA 103(9):3399–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masek J, Fabry P (1959) High-fat diet and the development of obesity in albino rats. Experientia 15:444–445

    Article  CAS  PubMed  Google Scholar 

  • McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 21(21):8655–8663

    CAS  PubMed  Google Scholar 

  • McLaughlin J, See RE (2003) Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology 168(1–2):57–65

    Article  CAS  PubMed  Google Scholar 

  • Muhammad A, Kolb B (2011) Maternal separation altered behavior and neuronal spine density without influencing amphetamine sensitization. Behav Brain Res 223(1):7–16

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2005) The neurobiology of cocaine addiction. Sci Pract Perspect 3(1):4–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215

    Article  CAS  PubMed  Google Scholar 

  • Oe Y et al (2013) Dendritic spine dynamics in synaptogenesis after repeated LTP inductions: dependence on pre-existing spine density. Sci Rep 3:1957

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogden CL et al (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295(13):1549–1555

    Article  CAS  PubMed  Google Scholar 

  • O’Malley A et al (2000) Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent. Neuroscience 99(2):229–232

    Article  PubMed  Google Scholar 

  • Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28(23):6046–6053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasakham K et al (2014) Synapse density and dendritic complexity are reduced in the prefrontal cortex following 7 days of forced abstinence from cocaine self-administration. PLoS One 9(7):e102524

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11(5):1598–1604

    Article  CAS  PubMed  Google Scholar 

  • Robinson MJ et al (2015) Individual differences in cue-induced motivation and striatal systems in rats susceptible to diet-induced obesity. Neuropsychopharmacology 40(9):2113–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schemmel R, Mickelsen O, Gill JL (1970) Dietary obesity in rats: body weight and body fat accretion in seven strains of rats. J Nutr 100(9):1041–1048

    CAS  PubMed  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36(2):241–263

    Article  CAS  PubMed  Google Scholar 

  • Shigeta H et al (2001) Lifestyle, obesity, and insulin resistance. Diabetes Care 24(3):608

    Article  CAS  PubMed  Google Scholar 

  • Sobal J, Stunkard AJ (1989) Socioeconomic status and obesity: a review of the literature. Psychol Bull 105(2):260–275

    Article  CAS  PubMed  Google Scholar 

  • Spence D (2011) Inactivity and obesity. BMJ 343:d5093

    Article  PubMed  Google Scholar 

  • Tominaga-Yoshino K et al (2002) Repetitive activation of protein kinase A induces slow and persistent potentiation associated with synaptogenesis in cultured hippocampus. Neurosci Res 44(4):357–367

    Article  CAS  PubMed  Google Scholar 

  • Tominaga-Yoshino K et al (2008) Repetitive induction of late-phase LTP produces long-lasting synaptic enhancement accompanied by synaptogenesis in cultured hippocampal slices. Hippocampus 18(3):281–293

    Article  CAS  PubMed  Google Scholar 

  • Tseng KY, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24(22):5131–5139

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND et al (2008a) Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 363(1507):3191–3200

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkow ND et al (2008b) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42(4):1537–1543

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang GJ et al (2001) Brain dopamine and obesity. Lancet 357(9253):354–357

    Article  CAS  PubMed  Google Scholar 

  • Wild SH, Byrne CD (2006) ABC of obesity. risk factors for diabetes and coronary heart disease. BMJ 333(7576):1009–1011

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada Y et al (2006) Genetic factors for obesity. Int J Mol Med 18(5):843–851

    CAS  PubMed  Google Scholar 

  • Yogev Y, Catalano PM (2009) Pregnancy and obesity. Obstet Gynecol Clin North Am 36(2):285–300

  • Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44(5):749–757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Zhaojie Zhang, the director of the Neuroscience microscopy facility at the University of Wyoming, for his help and guidance imaging the spine data. We would also like to thank Kevin Schlidt and Morgan Deters for their assistance with animal care. We are also grateful for the support contributed by NIGMS grant P30 GM103398, and the College of Health Sciences Seed Grant from the University of Wyoming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis E. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dingess, P.M., Darling, R.A., Kurt Dolence, E. et al. Exposure to a diet high in fat attenuates dendritic spine density in the medial prefrontal cortex. Brain Struct Funct 222, 1077–1085 (2017). https://doi.org/10.1007/s00429-016-1208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1208-y

Keywords

Navigation