Skip to main content
Log in

Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: neuronal tract tracing and developmental neuroimaging studies

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The lateral division of the bed nucleus of the stria terminalis (BSTL) and central nucleus of the amygdala (Ce) form the two poles of the ‘central extended amygdala’, a theorized subcortical macrostructure important in threat-related processing. Our previous work in nonhuman primates, and humans, demonstrating strong resting fMRI connectivity between the Ce and BSTL regions, provides evidence for the integrated activity of these structures. To further understand the anatomical substrates that underlie this coordinated function, and to investigate the integrity of the central extended amygdala early in life, we examined the intrinsic connectivity between the Ce and BSTL in non-human primates using ex vivo neuronal tract tracing, and in vivo diffusion-weighted imaging and resting fMRI techniques. The tracing studies revealed that BSTL receives strong input from Ce; however, the reciprocal pathway is less robust, implying that the primate Ce is a major modulator of BSTL function. The sublenticular extended amygdala (SLEAc) is strongly and reciprocally connected to both Ce and BSTL, potentially allowing the SLEAc to modulate information flow between the two structures. Longitudinal early-life structural imaging in a separate cohort of monkeys revealed that extended amygdala white matter pathways are in place as early as 3 weeks of age. Interestingly, resting functional connectivity between Ce and BSTL regions increases in coherence from 3 to 7 weeks of age. Taken together, these findings demonstrate a time period during which information flow between Ce and BSTL undergoes postnatal developmental changes likely via direct Ce → BSTL and/or Ce ↔ SLEAc ↔ BSTL projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ac:

Anterior commissure

ABmc:

Accessory basal nucleus, magnocellular subdivision

Astr:

Amygdalostriatal transition zone

Bi:

Basal nucleus, intermediate subdivision

Bmc:

Basal nucleus, magnocellular subdivision

Bpc:

Basal nucleus, parvicellular subdivision

BST:

Bed nucleus of the stria terminalis

BSTL:

Lateral bed nucleus of the stria terminalis

BSTLc:

Lateral bed nucleus of the stria terminalis, capsular subdivision

BSTLcn:

Lateral bed nucleus of the stria terminalis, central subdivision

BSTLj:

Lateral bed nucleus of the stria terminalis, juxtacapsular subdivision

BSTLP:

Lateral bed nucleus of the stria terminalis, posterior subdivision

C:

Caudate nucleus

Ce:

Central nucleus

CeLcn:

Central nucleus, lateral central subdivision

CeLc:

Central nucleus, lateral capsular subdivision

CeM:

Central nucleus, medial subdivision

EAc:

Central extended amygdala

GP:

Globus pallidus

GPe:

Globus pallidus, pars externa

GPi:

Globus pallidus, pars interna

H:

Hippocampus

Ic:

Internal capsule

L:

Lateral nucleus

M:

Medial nucleus

NBM:

Nucleus basalis of Meynert

P:

Putamen

S:

Shell of the ventral striatum

SLEAc:

Sublenticular extended amygdala, central subdivision

ST:

Stria terminalis

V:

Ventricle

VA:

Ventral amygdalofugal pathway

VP:

Ventral pallidum

References

  • Aggleton JP, Mishkin M (1984) Projections of the amygdala to the thalamus in the cynomolgus monkey. J Comp Neurol 222:56–68

    Article  CAS  PubMed  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    Article  CAS  PubMed  Google Scholar 

  • Alvarez RP, Chen G, Bodurka J, Kaplan R, Grillon C (2011) Phasic and sustained fear in humans elicits distinct patterns of brain activity. Neuroimage 55:389–400. doi:10.1016/j.neuroimage.2010.11.057

    Article  PubMed  Google Scholar 

  • Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggelton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 1–66

    Google Scholar 

  • Avery SN, Clauss JA, Winder DG, Woodward N, Heckers S, Blackford JU (2014) BNST neurocircuitry in humans. Neuroimage 91:311–323. doi:10.1016/j.neuroimage.2014.01.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  PubMed  Google Scholar 

  • Bienkowski MS, Rinaman L (2013) Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminalis in rats. Brain Struct Funct 218:187–208. doi:10.1007/s00429-012-0393-6

    Article  PubMed  Google Scholar 

  • Bienkowski MS, Wendel ES, Rinaman L (2013) Organization of multisynaptic circuits within and between the medial and the central extended amygdala. J Comp Neurol 521:3406–3431. doi:10.1002/cne.23356

    Article  PubMed  PubMed Central  Google Scholar 

  • Birn RM et al (2014) Evolutionarily conserved prefrontal-amygdalar dysfunction in early-life anxiety. Mol Psychiatry 19:915–922. doi:10.1038/mp.2014.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boll S, Gamer M, Gluth S, Finsterbusch J, Buchel C (2013) Separate amygdala subregions signal surprise and predictiveness during associative fear learning in humans. Eur J Neurosci 37:758–767. doi:10.1111/ejn.12094

    Article  PubMed  Google Scholar 

  • Bunney BS, Aghajanian GK (1976) The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique. Brain Res 117:423–435

    Article  CAS  PubMed  Google Scholar 

  • Bupesh M, Abellan A, Medina L (2011) Genetic and experimental evidence supports the continuum of the central extended amygdala and a mutiple embryonic origin of its principal neurons. J Comp Neurol 519:3507–3531. doi:10.1002/cne.22719

    Article  PubMed  Google Scholar 

  • Carpenter MB, Carlton SC, Keller JT, Conte P (1981) Connections of the subthalamic nucleus in the monkey. Brain Res 224:1–29

    Article  CAS  PubMed  Google Scholar 

  • Cassell MD, Freedman LJ, Shi C (1999) The intrinsic organization of the central extended amygdala. Ann N Y Acad Sci 877:217–241

    Article  CAS  PubMed  Google Scholar 

  • Chang LC, Jones DK, Pierpaoli C (2005) RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med 53:1088–1095. doi:10.1002/mrm.20426

    Article  PubMed  Google Scholar 

  • Cho YT, Ernst M, Fudge JL (2013) Cortico-amygdala-striatal circuits are organized as hierarchical subsystems through the primate amygdala. J Neurosci 33:14017–14030. doi:10.1523/JNEUROSCI.0170-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook PA, Bai Y, Nedjati-Gilani S, Seunarine KK, Hall MG, Parker GJ, Alexander DC (2006) Camino: open-source diffusion-MRI reconstruction and processing. In: 14th scientific meeting of the international society for magnetic resonance in medicine, Seattle, p 2759

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  PubMed  Google Scholar 

  • Davis M, Whalen P (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34

    Article  CAS  PubMed  Google Scholar 

  • Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35:105–135. doi:10.1038/npp.2009.109

    Article  PubMed  Google Scholar 

  • de Olmos JS (1990) Amygdala. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 583–710

    Chapter  Google Scholar 

  • de Olmos J (2004) The Amygdala. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • de Olmos JS, Ingram WR (1972) The projection field of the stria terminalis in the rat brain. J Comp Neurol 146:303–333

    Article  PubMed  Google Scholar 

  • deCampo DM, Fudge JL (2013) Amygdala projections to the lateral bed nucleus of the stria terminalis in the macaque: comparison with ventral striatal afferents. J Comp Neurol 521:3191–3216. doi:10.1002/cne.23340

    Article  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2004a) Organization of axonal projections from the anterolateral area of the bed nuclei of the stria terminalis. J Comp Neurol 468:277–298. doi:10.1002/cne.10949

    Article  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2004b) Projections from bed nuclei of the stria terminalis, posterior division: implications for cerebral hemisphere regulation of defensive and reproductive behaviors [erratum appears in J Comp Neurol. 2004 Jul 5;474(4):603–604]. J Comp Neurol 471:396–433

    Article  PubMed  Google Scholar 

  • Dong HW, Petrovich GD, Swanson LW (2001a) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev 38:192–246

    Article  CAS  PubMed  Google Scholar 

  • Dong HW, Petrovich GD, Watts AG, Swanson LW (2001b) Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J Comp Neurol 436:430–455

    Article  CAS  PubMed  Google Scholar 

  • Dosenbach NU et al (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361. doi:10.1126/science.1194144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvarci S, Bauer EP, Pare D (2009) The bed nucleus of the stria terminalis mediates inter-individual variations in anxiety and fear. J Neurosci 29:10357–10361. doi:10.1523/JNEUROSCI.2119-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fair DA et al (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci USA 105:4028–4032. doi:10.1073/pnas.0800376105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallon JH, Loughlin SE (1987) Monoamine innervation of cerebral cortex and a theory of the role of monoamines in cerebral cortex and basal ganglia. In: Jones EG, Peters A (eds) Cerebral cortex. Plenum Press, New York, pp 41–109

    Google Scholar 

  • Fendt M, Endres T, Apfelbach R (2003) Temporary inactivation of the bed nucleus of the stria terminalis but not of the amygdala blocks freezing induced by trimethylthiazoline, a component of fox feces. J Neurosci 23:23–28

    CAS  PubMed  Google Scholar 

  • Fox AS, Kalin NH (2014) A translational neuroscience approach to understanding the development of social anxiety disorder and its pathophysiology. Am J Psychiatry. doi:10.1176/appi.ajp.2014.14040449

    Google Scholar 

  • Fox AS, Shelton SE, Oakes TR, Davidson RJ, Kalin NH (2008) Trait-like brain activity during adolescence predicts anxious temperament in primates. PLoS ONE 3:e2570. doi:10.1371/journal.pone.0002570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox AS, Oler JA, Tromp DPM, Fudge JL, Kalin NH (2015) Extending the amygdala in theories of threat processing. Trends Neurosci (in Press)

  • Freedman LJ, Shi C (2001) Monoaminergic innervation of the macaque extended amygdala. Neuroscience 104:1067–1084

    Article  CAS  PubMed  Google Scholar 

  • Freedman LJ, Insel TR, Smith Y (2000) Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J Comp Neurol 421:172–188

    Article  CAS  PubMed  Google Scholar 

  • Freese JL, Amaral DG (2009) Neuroanatomy of the primate amygdala. In: Whalen PJ, Phelps EA (eds) The human amygdala. Guilford, NY, pp 3–42

    Google Scholar 

  • Fudge JL, Haber SN (2000) The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience 97:479–494

    Article  CAS  PubMed  Google Scholar 

  • Fudge JL, Haber SN (2001) Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates. Neuroscience 104:807–827

    Article  CAS  PubMed  Google Scholar 

  • Fudge JL, Tucker T (2009) Amygdala projections to central amygdaloid nucleus subdivisions and transition zones in the primate. Neuroscience 159:819–841. doi:10.1016/j.neuroscience.2009.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN (2002) Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 110:257–275

    Article  CAS  PubMed  Google Scholar 

  • Fudge JL, Breitbart MA, McClain C (2004) Amygdaloid inputs define a caudal component of the ventral striatum in primates. J Comp Neurol 476:330–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Fudge JL, deCampo DM, Becoats KT (2012) Revisiting the hippocampal-amygdala pathway in primates: association with immature-appearing neurons. Neuroscience 212:104–119. doi:10.1016/j.neuroscience.2012.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar P, Berger B, Lesur A, Borsotti JP, Febvret A (1987) Somatostatin 28 and neuropeptide Y innervation in the septal area and related cortical and subcortical structures of the human brain. Distribution, relationships and evidence for differential coexistence. Neuroscience 22:49–73

    Article  CAS  PubMed  Google Scholar 

  • Ghashghaei HT, Barbas H (2001) Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience 103:593–614

    Article  CAS  PubMed  Google Scholar 

  • Gray TS, Magnuson DJ (1987) Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat. J Comp Neurol 262:365–374

    Article  CAS  PubMed  Google Scholar 

  • Gray TS, Magnuson DJ (1992) Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. Peptides 13:451–460

    Article  CAS  PubMed  Google Scholar 

  • Grove EA (1988a) Efferent connections of the substantia innominata in the rat. J Comp Neurol 277:347–364

    Article  CAS  PubMed  Google Scholar 

  • Grove EA (1988b) Neural associations of the substantia innominata in the rat: afferent connections. J Comp Neurol 277:315–346

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Lynd E, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293:282–298

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Fudge JL, McFarland N (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382

    CAS  PubMed  Google Scholar 

  • Halperin JJ, LaVail JH (1975) A study of the dynamics of retrograde transport and accumulation of horseradish peroxidase in injured neurons. Brain Res 100:253–269

    Article  CAS  PubMed  Google Scholar 

  • Hasler G, Fromm S, Alvarez RP, Luckenbaugh DA, Drevets WC, Grillon C (2007) Cerebral blood flow in immediate and sustained anxiety. J Neurosci 27:6313–6319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–147. doi:10.1016/j.neubiorev.2005.06.006

    Article  PubMed  Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991) ”Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165

    Article  CAS  PubMed  Google Scholar 

  • Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J (1997) Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 76:957–1006

    Article  CAS  PubMed  Google Scholar 

  • Heimer L et al (1999) The human basal forebrain. Part II. In: Bloom FE, Bjorkland A, Hokfelt T (eds) Handbook of chemical neuroanatomy, vol 15: the primate nervous system, part III. Elsevier, Amsterdam, pp 57–226

    Chapter  Google Scholar 

  • Huang H et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273. doi:10.1523/JNEUROSCI.2769-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings JH, Sparta DR, Stamatakis AM, Ung RL, Pleil KE, Kash TL, Stuber GD (2013) Distinct extended amygdala circuits for divergent motivational states. Nature 496:224–228. doi:10.1038/nature12041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW (2010) Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 52:571–582. doi:10.1016/j.neuroimage.2010.04.246

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35:337–481

    Article  Google Scholar 

  • Kalin NH, Shelton SE, Takahashi LK (1991) Defensive behaviors in infant rhesus monkeys: ontogeny and context-dependent selective expression. Child Dev 62:1175–1183

    Article  CAS  PubMed  Google Scholar 

  • Kalin NH, Shelton SE, Fox AS, Oakes TR, Davidson RJ (2005) Brain regions associated with the expression and contextual regulation of anxiety in primates. Biol Psychiatry 58:796–804

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaufmann WA, Barnas U, Maier J, Saria A, Alheid GF, Marksteiner J (1997) Neurochemical compartments in the human forebrain: evidence for a high density of secretoneurin-like immunoreactivity in the extended amygdala. Synapse 26:114–130

    Article  CAS  PubMed  Google Scholar 

  • Kim SY et al (2013) Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496:219–223. doi:10.1038/nature12018

    Article  CAS  PubMed  Google Scholar 

  • Klingler J, Gloor P (1960) The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol 115:333–369

    Article  CAS  PubMed  Google Scholar 

  • Krüger O, Shiozawa T, Kreifelts B, Scheffler K, Ethofer T (2015) Three distinct fiber pathways of the bed nucleus of the stria terminalis to the amygdala and prefrontal cortex. Cortex 66:60–68. doi:10.1016/j.cortex.2015.02.007

    Article  PubMed  Google Scholar 

  • LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20:937–945

    Article  CAS  PubMed  Google Scholar 

  • Lazar M et al (2003) White matter tractography using diffusion tensor deflection. Hum Brain Mapp 18:306–321. doi:10.1002/hbm.10102

    Article  PubMed  Google Scholar 

  • Lee Y, Davis M (1997) Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 17:6434–6446

    CAS  PubMed  Google Scholar 

  • Lesur A, Gaspar P, Alvarez C, Berger B (1989) Chemoanatomic compartments in the human bed nucleus of the stria terminalis. Neuroscience 32(1):181–194

    Article  CAS  PubMed  Google Scholar 

  • Martin LJ, Powers RE, Dellovade TL, Price DL (1991) The bed nucleus-amygdala continuum in human and monkey. J Comp Neurol 309:445–485

    Article  CAS  PubMed  Google Scholar 

  • McDonald AJ (2003) Is there an amygdala and how far does it extend? An anatomical perspective. Ann N Y Acad Sci 985:1–21

    Article  PubMed  Google Scholar 

  • McDonald AJ, Shammah-Lagnado SJ, Shi C, Davis M (1999) Cortical afferents to the extended amygdala. Ann N Y Acad Sci 877:309–338

    Article  CAS  PubMed  Google Scholar 

  • Miyashita T, Ichinohe N, Rockland KS (2007) Differential modes of termination of amygdalothalamic and amygdalocortical projections in the monkey. J Comp Neurol 502:309–324. doi:10.1002/cne.21304

    Article  PubMed  Google Scholar 

  • Mobbs D, Yu R, Rowe JB, Eich H, FeldmanHall O, Dalgleish T (2010) Neural activity associated with monitoring the oscillating threat value of a tarantula. Proc Natl Acad Sci USA 107:20582–20586. doi:10.1073/pnas.1009076107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moga MM, Herbert H, Hurley KM, Yasui Y, Gray TS, Saper CB (1990) Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. J Comp Neurol 295:624–661

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Aggarwal M (2014) In vivo magnetic resonance imaging of the human limbic white matter. Front Aging Neurosci 6:321. doi:10.3389/fnagi.2014.00321

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagy FZ, Pare D (2008) Timing of impulses from the central amygdala and bed nucleus of the stria terminalis to the brain stem. J Neurophysiol 100:3429–3436. doi:10.1152/jn.90936.2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Nance DM, Burns J (1990) Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls. Brain Res Bull 25:139–145

    Article  CAS  PubMed  Google Scholar 

  • Nauta WJ (1961) Fibre degeneration following lesions of the amygdaloid complex in the monkey. J Anat 95:515–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novotny GE (1977) A direct ventral connection between the bed nucleus of the stria terminalis and the amygdaloid complex in the monkey (Macaca fascicularis). J Hirnforsch 18:271–284

    CAS  PubMed  Google Scholar 

  • Oler JA et al (2012) Evidence for coordinated functional activity within the extended amygdala of non-human and human primates. Neuroimage 61:1059–1066. doi:10.1016/j.neuroimage.2012.03.045

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Huang X, Petrides M, Toga A (2009) The rhesus monkey brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Pego JM, Morgado P, Pinto LG, Cerqueira JJ, Almeida OF, Sousa N (2008) Dissociation of the morphological correlates of stress-induced anxiety and fear. Eur J Neurosci 27:1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Porrino LJ, Crane AM, Goldman-Rakic PS (1981) Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J Comp Neurol 198:121–136

    Article  CAS  PubMed  Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1:1242–1259

    CAS  PubMed  Google Scholar 

  • Pritchard TC, Hamilton RB, Norgren R (2000) Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 165:101–117

    Article  CAS  PubMed  Google Scholar 

  • Reynolds SM, Zahm DS (2005) Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J Neurosci 25:11757–11767

    Article  CAS  PubMed  Google Scholar 

  • Rinaman L, Levitt P, Card JP (2000) Progressive postnatal assembly of limbic-autonomic circuits revealed by central transneuronal transport of pseudorabies virus. J Neurosci 20:2731–2741

    CAS  PubMed  Google Scholar 

  • Rizvi TA, Ennis M, Behbehani MM, Shipley MT (1991) Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. J Comp Neurol 303:121–131

    Article  CAS  PubMed  Google Scholar 

  • Roberts GW (1992) Neuropeptides: celluler morphology, major pathways, and functional considerations. In: Aggelton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 115–142

    Google Scholar 

  • Rose J, Vassar R, Cahill-Rowley K, Guzman XS, Stevenson DK, Barnea-Goraly N (2014) Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study. Neuroimage 86:244–256. doi:10.1016/j.neuroimage.2013.09.053

    Article  PubMed  Google Scholar 

  • Rosene DL, Roy NJ, Davis BJ (1986) A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J Histochem Cytochem 34(10):1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256:175–210

    Article  CAS  PubMed  Google Scholar 

  • Schmued L, Kyriakidis K, Heimer L (1990) In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluoro-Ruby, within the CNS. Brain Res 526:127–134

    Article  CAS  PubMed  Google Scholar 

  • Somerville LH, Whalen PJ, Kelley WM (2010) Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biol Psychiatry 68:416–424. doi:10.1016/j.biopsych.2010.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Somerville LH, Wagner DD, Wig GS, Moran JM, Whalen PJ, Kelley WM (2013) Interactions between transient and sustained neural signals support the generation and regulation of anxious emotion. Cereb Cortex 23:49–60. doi:10.1093/Cercor/Bhr373

    Article  PubMed  Google Scholar 

  • Stefanacci L, Amaral DG (2002) Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J Comp Neurol 451:301–323

    Article  PubMed  Google Scholar 

  • Straube T, Mentzel HJ, Miltner WH (2007) Waiting for spiders: brain activation during anticipatory anxiety in spider phobics. Neuroimage 37:1427–1436. doi:10.1016/j.neuroimage.2007.06.023

    Article  PubMed  Google Scholar 

  • Sun N, Roberts L, Cassell MD (1991) Rat central amygdaloid nucleus projections to the bed nucleus of the stria terminalis. Brain Res Bull 27:651–662

    Article  CAS  PubMed  Google Scholar 

  • Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7:e1000157. doi:10.1371/journal.pbio.1000157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson LW (2003) The amygdala and its place in the cerebral hemisphere. Ann N Y Acad Sci 985:174–184

    Article  PubMed  Google Scholar 

  • Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331

    Article  CAS  PubMed  Google Scholar 

  • Torrisi S et al (2015) Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Hum Brain Mapp. doi:10.1002/hbm.22899

    PubMed  PubMed Central  Google Scholar 

  • Turner BH, Zimmer J (1984) The architecture and some of the interconnections of the rat’s amygdala and lateral periallocortex. J Comp Neurol 227:540–557

    Article  CAS  PubMed  Google Scholar 

  • Uddin LQ, Supekar K, Menon V (2010) Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci 4:21. doi:10.3389/fnsys.2010.00021

    PubMed  PubMed Central  Google Scholar 

  • Vasung L, Huang H, Jovanov-Milosevic N, Pletikos M, Mori S, Kostovic I (2010) Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat 217:400–417. doi:10.1111/j.1469-7580.2010.01260.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Veraart J et al (2011) Population-averaged diffusion tensor imaging atlas of the Sprague Dawley rat brain. Neuroimage 58:975–983. doi:10.1016/j.neuroimage.2011.06.063

    Article  PubMed  PubMed Central  Google Scholar 

  • Vercelli A, Repici M, Garbossa D, Grimaldi A (2000) Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull 51:11–28

    Article  CAS  PubMed  Google Scholar 

  • Vergun S et al (2013) Characterizing functional connectivity differences in aging adults using machine learning on resting state fMRI data. Front Comput Neurosci 7:38. doi:10.3389/fncom.2013.00038

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent JL et al (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86. doi:10.1038/nature05758

    Article  CAS  PubMed  Google Scholar 

  • Walker DL, Davis M (1997) Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. J Neurosci 17:9375–9383

    CAS  PubMed  Google Scholar 

  • Walker DL, Davis M (2008) Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct Funct 213:29–42. doi:10.1007/s00429-008-0183-3

    Article  PubMed  Google Scholar 

  • Wallace DM, Magnuson DJ, Gray TS (1992) Organization of amygdaloid projections to brainstem dopaminergic, noradrenergic, and adrenergic cell groups in the rat. Brain Res Bull 28:447–454

    Article  CAS  PubMed  Google Scholar 

  • Walter A, Mai JK, Lanta L, Gorcs T (1991) Differential distribution of immunohistochemical markers in the bed nucleus of the stria terminalis in the human brain. J Chem Neuroanat 4:281–298

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Benner T, Sorensen AG, Wedeen VJ (2007) Diffusion toolkit: a software package for diffusion imaging data processing and tractography. In: Paper presented at the Proc. Intl. Soc. Mag. Reson. Med., Berlin, Germany, May 19th–25th

  • Woolrich MW et al (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186. doi:10.1016/j.neuroimage.2008.10.055

    Article  PubMed  Google Scholar 

  • Yilmazer-Hanke DM (2012) Amygdala. In: Mai JK, Paxinos G (eds) The human nervous system. Academic Press, San Diego, pp 759–834

    Chapter  Google Scholar 

  • Zahm DS (2008) Accumbens in a functional-anatomical systems context. In: David H (ed) The nucleus accumbens: neurotransmitters and related behaviours. Transworld Research Network-Research Signpost, Kerala, pp 1–37

    Google Scholar 

  • Zhang H, Yushkevich PA, Alexander DC, Gee JC (2006) Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med Image Anal 10:764–785. doi:10.1016/j.media.2006.06.004

    Article  PubMed  Google Scholar 

  • Zimmerman JM, Maren S (2011) The bed nucleus of the stria terminalis is required for the expression of contextual but not auditory freezing in rats with basolateral amygdala lesions. Neurobiol Learn Mem 95:199–205. doi:10.1016/j.nlm.2010.11.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the technical expertise of Ms. Nanette Alcock and thank the personnel of the Harlow Center for Biological Psychology, the HealthEmotions Research Institute, the Waisman Laboratory for Brain Imaging and Behavior, and the Wisconsin National Primate Research Center (WNPRC). This research was conducted in part at a facility constructed with support from Research Facilities Improvement Program Grant numbers RR15459-01 and RR020141-01. This work was supported by Grants from the National Institutes of Health: P51OD011106 (WNPRC); R01-MH063291 (JLF); F30-MH096502 (DMD); R01-MH046729 (NHK); R01-MH081884 (NHK); P50-MH100031 (RJD, NHK); T32 NS007-489-09 (LMC) and T32-MH018931-25. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Oler.

Ethics declarations

Conflict of interest

Dr. Kalin has received honoraria from CME Outfitters, Elsevier, and the Pritzker Neuropsychiatric Disorders Research Consortium. He is on the Advisory Boards for Corcept Therapeutics and Skyland Trail-George West Mental Health Foundation. Dr. Kalin is a Stockholder in Corcept Therapeutics, and owns several patents including: promoter sequences for corticotropin-releasing factor alpha (U.S. Patent #7071323, issued on 07-04-06); a method of identifying agents that alter the activity of the promoter sequences (U.S. Patent #7531356 issued on 05-12-09); promoter sequences for urocortin II and the use thereof (U.S. Patent #7087385 issued on 08-08-06); and promoter sequences for corticotropin-releasing factor binding protein and use thereof (U.S. Patent #7122650, issued on 10-17-06). All other authors declare no conflicts of interest.

Additional information

J. A. Oler and D. P. M. Tromp contributed equally to this manuscript.

J. L. Fudge and N. H. Kalin share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oler, J.A., Tromp, D.P.M., Fox, A.S. et al. Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: neuronal tract tracing and developmental neuroimaging studies. Brain Struct Funct 222, 21–39 (2017). https://doi.org/10.1007/s00429-016-1198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1198-9

Keywords

Navigation