Skip to main content

Advertisement

Log in

Plasticity of the developmentally arrested staggerer cerebellum in response to exogenous RORα

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Retinoid-related orphan receptor α (RORα) is a critical master transcription factor that governs postnatal cerebellar development. An RORα-deficient cerebellum has a persistent external granular layer (EGL), rudimentary Purkinje cell (PC) dendrites, grossly reduced numbers of immature parallel fiber (PF)-PC synapses, and multiple climbing fibers (CF) innervating PCs in mice after 3 weeks of age when these features have disappeared in wild-type mice. Functionally, metabotropic glutamate receptor (mGluR)-mediated signaling in PCs is completely abrogated. Here we examined whether these defects could be corrected by lentivirally providing the RORα gene to 3-week-old PCs of RORα-deficient homozygous staggerer (sg/sg) mice. RORα expression in sg/sg PCs significantly increased the numbers of PF–PC synapses, spines on PC dendritic branchlets, and internal granule cells, concomitant with regression of the EGL, suggesting enhanced proliferation in the EGL and migration of post-mitotic progeny into the internal granular layer with augmented synaptogenesis between PFs and PC dendrites. However, the primary dendritic stems were only slightly extended, and mGluR signaling and the loss of redundant CF synapses in sg/sg PCs remained unrestored. These results suggest that the mitogenic and migratory potential of external granule cells in response to RORα was preserved in the >3-week-old sg/sg mouse cerebellum. Moreover, sg/sg PCs sprouted spines and formed synapses with PFs. However, lengthening of the primary dendritic stems, establishment of mGluR signaling, and removal of CF synapses in sg/sg PCs were regressed by 3 weeks of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Boukhtouche F, Doulazmi M, Frederic F, Dusart I, Brugg B, Mariani J (2006) RORalpha, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: from development to ageing. Cerebellum 5:97–104. doi:10.1080/14734220600750184

    Article  CAS  PubMed  Google Scholar 

  • Boukhtouche F, Brugg B, Wehrle R, Bois-Joyeux B, Danan JL, Dusart I, Mariani J (2010) Induction of early Purkinje cell dendritic differentiation by thyroid hormone requires RORalpha. Neural Dev 5:18. doi:10.1186/1749-8104-5-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter AR, Chen C, Schwartz PM, Segal RA (2002) Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci 22:1316–1327

    CAS  PubMed  Google Scholar 

  • Caviness VS Jr, So DK, Sidman RL (1972) The hybrid reeler mouse. J Hered 63:241–246

    PubMed  Google Scholar 

  • Chen XR, Heck N, Lohof AM, Rochefort C, Morel MP, Wehrle R, Doulazmi M, Marty S, Cannaya V, Avci HX, Mariani J, Rondi-Reig L, Vodjdani G, Sherrard RM, Sotelo C, Dusart I (2013) Mature Purkinje cells require the retinoic acid-related orphan receptor-alpha (RORalpha) to maintain climbing fiber mono-innervation and other adult characteristics. J Neurosci 33:9546–9562. doi:10.1523/JNEUROSCI.2977-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Crepel F, Delhaye-Bouchaud N, Guastavino JM, Sampaio I (1980) Multiple innervation of cerebellar Purkinje cells by climbing fibres in staggerer mutant mouse. Nature 283:483–484

    Article  CAS  PubMed  Google Scholar 

  • Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    PubMed  Google Scholar 

  • Donnelly ML, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD (2001) Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82:1013–1025

    Article  CAS  PubMed  Google Scholar 

  • Dusart I, Flamant F (2012) Profound morphological and functional changes of rodent Purkinje cells between the first and the second postnatal weeks: a metamorphosis? Front Neuroanat 6:11. doi:10.3389/fnana.2012.00011

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Perkins EM, Clarkson YL, Tobia S, Lyndon AR, Jackson M, Rothstein JD (2011) β-III spectrin is critical for development of purkinje cell dendritic tree and spine morphogenesis. J Neurosci 31:16581–16590. doi:10.1523/JNEUROSCI.3332-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold DA, Baek SH, Schork NJ, Rose DW, Larsen DD, Sachs BD, Rosenfeld MG, Hamilton BA (2003) RORalpha coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calcium-dependent pathways. Neuron 40:1119–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold DA, Gent PM, Hamilton BA (2007) ROR alpha in genetic control of cerebellum development: 50 staggering years. Brain Res 1140:19–25. doi:10.1016/j.brainres.2005.11.080

    Article  CAS  PubMed  Google Scholar 

  • Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382

    Article  CAS  PubMed  Google Scholar 

  • Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K, Russell LB, Mueller KL, van Berkel V, Birren BW, Kruglyak L, Lander ES (1996) Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature 379:736–739. doi:10.1038/379736a0

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Kano M (2003) Functional differentiation of multiple climbing fiber inputs during synapse elimination in the developing cerebellum. Neuron 38:785–796

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M (2009) Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience 162:601–611. doi:10.1016/j.neuroscience.2008.12.037

    Article  CAS  PubMed  Google Scholar 

  • Herrup K, Sunter K (1987) Numerical matching during cerebellar development: quantitative analysis of granule cell death in staggerer mouse chimeras. J Neurosci 7:829–836

    CAS  PubMed  Google Scholar 

  • Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288:1832–1835

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Yamasaki M, Watanabe M, Kano M (2000) Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci 20:4954–4961

    CAS  PubMed  Google Scholar 

  • Kano M, Hashimoto K (2012) Activity-dependent maturation of climbing fiber to Purkinje cell synapses during postnatal cerebellar development. Cerebellum 11:449–450. doi:10.1007/s12311-011-0337-3

    Article  PubMed  Google Scholar 

  • Kano M, Hashimoto K, Kurihara H, Watanabe M, Inoue Y, Aiba A, Tonegawa S (1997) Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 18:71–79

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi K, Habara T, Terashima T, Kikkawa S (2010) GABA modulates development of cerebellar Purkinje cell dendrites under control of endocannabinoid signaling. J Neurochem 114:627–638. doi:10.1111/j.1471-4159.2010.06793.x

    Article  CAS  PubMed  Google Scholar 

  • Kenney AM, Rowitch DH (2000) Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20:9055–9067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE 6:e18556. doi:10.1371/journal.pone.0018556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis DM, Sidman RL (1978) Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol 179:831–863. doi:10.1002/cne.901790408

    Article  CAS  PubMed  Google Scholar 

  • Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP (2004) Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol 270:393–410. doi:10.1016/j.ydbio.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yu L, Gu X, Ma Y, Pasqualini R, Arap W, Snyder EY, Sidman RL (2013) Tissue plasminogen activator regulates Purkinje neuron development and survival. Proc Natl Acad Sci USA 110:E2410–E2419. doi:10.1073/pnas.1305010110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger F (2010) Molecular and cellular control of dendrite maturation during brain development. Curr Mol Pharmacol 3:1–11

    Article  CAS  PubMed  Google Scholar 

  • Mitsumura K, Hosoi N, Furuya N, Hirai H (2011) Disruption of metabotropic glutamate receptor signalling is a major defect at cerebellar parallel fibre-Purkinje cell synapses in staggerer mutant mice. J Physiol 589:3191–3209. doi:10.1113/jphysiol.2011.207563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison ME, Mason CA (1998) Granule neuron regulation of Purkinje cell development: striking a balance between neurotrophin and glutamate signaling. J Neurosci 18:3563–3573

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Watanabe M, Inoue Y (1997) Prominent expression of nuclear hormone receptor ROR alpha in Purkinje cells from early development. Neurosci Res 28:177–184

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  CAS  PubMed  Google Scholar 

  • O’Brien J, Unwin N (2006) Organization of spines on the dendrites of Purkinje cells. Proc Natl Acad Sci USA 103:1575–1580. doi:10.1073/pnas.0507884103

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulain FE, Chauvin S, Wehrle R, Desclaux M, Mallet J, Vodjdani G, Dusart I, Sobel A (2008) SCLIP is crucial for the formation and development of the Purkinje cell dendritic arbor. J Neurosci 28:7387–7398. doi:10.1523/JNEUROSCI.1942-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19:269–281

    Article  CAS  PubMed  Google Scholar 

  • Serra HG, Byam CE, Lande JD, Tousey SK, Zoghbi HY, Orr HT (2004) Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum Mol Genet 13:2535–2543. doi:10.1093/hmg/ddh268

    Article  CAS  PubMed  Google Scholar 

  • Serra HG, Duvick L, Zu T, Carlson K, Stevens S, Jorgensen N, Lysholm A, Burright E, Zoghbi HY, Clark HB, Andresen JM, Orr HT (2006) RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell 127:697–708. doi:10.1016/j.cell.2006.09.036

    Article  CAS  PubMed  Google Scholar 

  • Sidman RL, Lane PW, Dickie MM (1962) Staggerer, a new mutation in the mouse affecting the cerebellum. Science 137:610–612

    Article  CAS  PubMed  Google Scholar 

  • Smeyne RJ, Chu T, Lewin A, Bian F, Sanlioglu S, Kunsch C, Lira SA, Oberdick J (1995) Local control of granule cell generation by cerebellar Purkinje cells. Mol Cell Neurosci 6:230–251. doi:10.1006/mcne.1995.1019

    Article  CAS  PubMed  Google Scholar 

  • Sonmez E, Herrup K (1984) Role of staggerer gene in determining cell number in cerebellar cortex. II. Granule cell death and persistence of the external granule cell layer in young mouse chimeras. Brain Res 314:271–283

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C (1975) Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res 94:19–44

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C, Dusart I (2009) Intrinsic versus extrinsic determinants during the development of Purkinje cell dendrites. Neuroscience 162:589–600. doi:10.1016/j.neuroscience.2008.12.035

    Article  CAS  PubMed  Google Scholar 

  • Steinmayr M, Andre E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, Daniel H, Crepel F, Mariani J, Sotelo C, Becker-Andre M (1998) staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci USA 95:3960–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson DJ, Steshina EY, Wakenight P, Aldinger KA, Goldowitz D, Millen KJ, Chizhikov VV (2010) Phenotypic and genetic analysis of the cerebellar mutant tmgc26, a new ENU-induced ROR-alpha allele. Eur J Neurosci 32:707–716. doi:10.1111/j.1460-9568.2010.07330.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594. doi:10.1038/nbt957

    Article  CAS  PubMed  Google Scholar 

  • Torashima T, Yamada N, Itoh M, Yamamoto A, Hirai H (2006) Exposure of lentiviral vectors to subneutral pH shifts the tropism from Purkinje cell to Bergmann glia. Eur J Neurosci 24:371–380

    Article  PubMed  Google Scholar 

  • Vogel MW, Sinclair M, Qiu D, Fan H (2000) Purkinje cell fate in staggerer mutants: agenesis versus cell death. J Neurobiol 42:323–337

    Article  CAS  PubMed  Google Scholar 

  • Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9:445–448

    Article  CAS  PubMed  Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Kho A, Kenney AM, Di Yuk DI, Kohane I, Rowitch DH (2002) Identification of genes expressed with temporal-spatial restriction to developing cerebellar neuron precursors by a functional genomic approach. Proc Natl Acad Sci USA 99:5704–5709. doi:10.1073/pnas.082092399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. Nobutake Hosoi for many helpful discussions. We thank Junko Sugiyama, Asako Onishi, and Hiromi Hirai for maintaining and genotyping the mutant mice. This study was supported by a grant from the Funding Program for Next Generation World-Leading Researchers (LS021), grants from Research on Measures for Intractable Diseases from the Ministry of Health, Labor and Welfare and and Gunma University Initiative for Advanced Research (GIAR) (to H. Hirai), a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS), and a Grant-in-Aid for Young Scientists (B) KAKENHI (22700374).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Hirai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iizuka, A., Matsuzaki, Y., Konno, A. et al. Plasticity of the developmentally arrested staggerer cerebellum in response to exogenous RORα. Brain Struct Funct 221, 2879–2889 (2016). https://doi.org/10.1007/s00429-015-1077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1077-9

Keywords

Navigation